• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ma, D. D. (Ma, D. D..) | Xia, G. D. (Xia, G. D..) (Scholars:夏国栋) | Wang, J. (Wang, J..) | Yang, Y. C. (Yang, Y. C..) | Jia, Y. T. (Jia, Y. T..) | Zong, L. X. (Zong, L. X..)

Indexed by:

EI Scopus SCIE

Abstract:

For cooling specific chip of 2 mm*10 mm, the 4-ports and offset zigzag microchannels are designed. The fluid flow and heat transfer characteristics of 4-ports silicon heat sinks with rectangle and zigzag microchannels have been investigated experimentally. Deionized water is employed as the cooling fluid with flow rates of 28-72 ml/min. Results show the 4-ports heat sink can effectively reduce pressure drops and reduce temperature rising along the flow directions for the fixed flow rates. For 4-ports with rectangle microchannel, the pressure drops is decreased about 70% and average temperature also is reduced by 2.8 degrees C. It can be interpreted that 4-ports structures reduce the length of channel and increase channel number, which leads to the flow velocity decreased by 0.5 times and the fluid distribution more uniform. Compared with 4-ports with rectangle microchannels, for 4-ports with zigzag microchannels heat sink, the pressure drop is reduced under the lower flow rates but increased slightly under larger flow rates. And temperatures of all flow rates are reduced, which is reduced by 3.8 degrees C and pressure drop only increased 2.6 kPa at flow rates of 72 ml/min. It can be interpreted that zigzag cavities redevelop thermal boundary layer and enhance the fluid disturbance to make the fluid mixing better. Additional, zigzag cavities also enlarge heat transfer areas and reduce the fluid velocity by increasing flow cross-section areas. Under fixed pumping power, 4-ports with Z can meet the larger heat dissipation and smaller flow rates requirement.

Keyword:

Offset zigzag microchannel 4-ports Heat transfer enhancement Micro heat sink Flow resistance

Author Community:

  • [ 1 ] [Ma, D. D.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Xia, G. D.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, J.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Y. C.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Jia, Y. T.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Zong, L. X.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 夏国栋

    [Xia, G. D.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENERGY CONVERSION AND MANAGEMENT

ISSN: 0196-8904

Year: 2017

Volume: 152

Page: 157-165

1 0 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:165

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 43

SCOPUS Cited Count: 49

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:455/10651267
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.