Indexed by:
Abstract:
In this paper, fractional-order recurrent neural network models with Caputo Derivative are investigated. Firstly, we mainly focus our attention on Hopf bifurcation conditions for commensurate fractional-order network with time delay to reveal the essence that fractional-order equation can simulate the activity of neuron oscillation. Secondly, for incommensurate fractional-order neural network model, we prove the stability of the zero equilibrium point to show that incommensurate fractional-order neural network still converges to zero point. Finally, Hopf bifurcation conditions for the incommensurate fractional-order neural network model are first obtained using bifurcation theory based on commensurate fractional-order system.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
ISSN: 0218-1274
Year: 2017
Issue: 12
Volume: 27
2 . 2 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:66
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 17
Affiliated Colleges: