• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xia, Guodong (Xia, Guodong.) (Scholars:夏国栋) | Cao, Lei (Cao, Lei.) | Bi, Guanglong (Bi, Guanglong.)

Indexed by:

EI Scopus SCIE

Abstract:

The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation. (C) 2017 Elsevier B.V. All rights reserved.

Keyword:

Cooling configuration Temperature distribution Lithium ion battery Thermal management system Electric vehicle

Author Community:

  • [ 1 ] [Xia, Guodong]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Cao, Lei]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Bi, Guanglong]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 夏国栋

    [Xia, Guodong]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF POWER SOURCES

ISSN: 0378-7753

Year: 2017

Volume: 367

Page: 90-105

9 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:165

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 447

SCOPUS Cited Count: 504

ESI Highly Cited Papers on the List: 14 Unfold All

  • 2025-5
  • 2025-3
  • 2025-1
  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:414/10650561
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.