• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Lu, Xuemei (Lu, Xuemei.) | Peng, Yuelian (Peng, Yuelian.) (Scholars:彭跃莲) | Qiu, Haoran (Qiu, Haoran.) | Liu, Xinrui (Liu, Xinrui.) | Ge, Lei (Ge, Lei.)

Indexed by:

EI Scopus SCIE

Abstract:

This study aims to compare the anti-wetting and anti-fouling surface behavior in membrane distillation (MD) by two surface modification routes on porous polyvinylidene fluoride (PVDF) membranes. A superhydrophobic membrane (SiO2-PFTS/PVDF) was obtained by dynamically forming 1H,1H,2H,2H-perfluorooctyl trichlorosilane containing SiO2 nanoparticles on the membrane surface as in our previous study; whereas a superhydrophilic membrane (PVA/PVDF) was developed by attaching a thin layer of poly(vinylalcohol) hydrogel onto the membrane's surface. The effects of surface modification on their anti-wetting or anti-fouling properties were examined in MD using an aqueous NaCl solution with various organic foulants (e.g., kerosene, humic acid (HA), and sodium dodecyl benzene sulfonate (SDBS)). The results showed that the superhydrophobic SiO2-PFTS/PVDF membrane displayed excellent self-cleaning characteristics and wetting resistance against all three studied foulants. In contrast, the hydrophilic surface layer of the PVA/PVDF membrane only slowed down wetting and fouling when in contact with kerosene and HA. Nonetheless, when dealing with SDBS, its anti-wettability performance was comparable to that of the SiO2-PFTS/PVDF membrane. The superhydrophobic SiO2-PFTS/PVDF membrane exhibited anti-fouling and anti-wetting behaviors even though the extended Derjaguin-Landau-Verwey-Overbeek theory indicated the attraction force between the membrane surface and all three foulants. (C) 2017 Elsevier B.V. All rights reserved.

Keyword:

Anti-wetting Superhydrophobic Membrane distillation Superhydrophilic Anti-fouling

Author Community:

  • [ 1 ] [Lu, Xuemei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yuelian]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Qiu, Haoran]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Xinrui]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Ge, Lei]Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia

Reprint Author's Address:

  • 彭跃莲

    [Peng, Yuelian]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

DESALINATION

ISSN: 0011-9164

Year: 2017

Volume: 413

Page: 127-135

9 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:212

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 113

SCOPUS Cited Count: 120

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:765/10582167
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.