• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Tang, Fawei (Tang, Fawei.) | Song, Xiaoyan (Song, Xiaoyan.) (Scholars:宋晓艳) | Wang, Haibin (Wang, Haibin.) | Liu, Xuemei (Liu, Xuemei.) | Nie, Zuoren (Nie, Zuoren.) (Scholars:聂祚仁)

Indexed by:

Scopus SCIE PubMed

Abstract:

A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.

Keyword:

Author Community:

  • [ 1 ] [Tang, Fawei]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Song, Xiaoyan]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Haibin]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Xuemei]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Nie, Zuoren]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 宋晓艳

    [Song, Xiaoyan]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

PHYSICAL CHEMISTRY CHEMICAL PHYSICS

ISSN: 1463-9076

Year: 2017

Issue: 6

Volume: 19

Page: 4307-4316

3 . 3 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:212

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 5

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:417/10629414
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.