Indexed by:
Abstract:
Semantic-based image retrieval is the desired target of Content-based image retrieval (CBIR). In this paper, we proposed a new method to extract semantic information for CBIR using the relevance feedback results. Firstly it is assumed that positive and negative examples in relevant feedback are containing semantic content added by users. Then image internal semantic model (IISM) is proposed to represent comprehensive pair-wise correlation information for images through analyzing the feedback results. Finally, correlation learning method is proposed to represent the images' pair-wise relationship based on statistical value of access path, access frequency, similarity factor and correlation factor. Experimental results on Corel datasets show the effectiveness of the proposed model and method. © Springer-Verlag Berlin Heidelberg 2004.
Keyword:
Reprint Author's Address:
Email:
Source :
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN: 0302-9743
Year: 2004
Volume: 3332
Page: 172-179
JCR Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: