• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:张红光

Refining:

Source

Submit Unfold

Co-Author

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 49 >
Performance Prediction and Optimization of Single-Piston Free Piston Expander-Linear Generator Based on Machine Learning and Genetic Algorithm SCIE
期刊论文 | 2024 , 2024 | INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Abstract&Keyword Cite

Abstract :

This paper proposed a single-piston free piston expander-linear generator (SFPE-LG) prototype applied to organic Rankine cycle systems. Two valve timing control strategies, namely, time control strategy (TCS) and position control strategy (PCS), were developed. Based on the experimental data, a back propagation neural network (BPNN) prediction model was established. The effects of structural parameters such as neural network layers, transfer function, training function, hidden layer nodes, and learning rate on the prediction accuracy of this BPNN model were discussed. The training and prediction accuracy of the BPNN model was verified using 5-fold cross-validation and Wilcoxon signed-rank test. Moreover, the BPNN model was integrated with a genetic algorithm to predict and optimize the maximum output power of the SFPE-LG. The results showed that the BPNN model used to predict the motion characteristics and output performance of the SFPE-LG exhibits strong learning ability and high prediction accuracy. Notably, the prediction accuracy of the BPNN model is significantly higher under the PCS compared to TCS. The effect of hidden layer nodes on mean square error (MSE) and correlation coefficient (R) is greater than that of the learning rate. When the number of hidden layer nodes exceeds 30, the BPNN model consistently achieves low MSE and high R. The optimization results showed that the SFPE-LG can obtain a maximum output power of 141.69 W under the TCS, when the working parameters are inlet pressure of 0.7 MPa, intake duration of 35 ms, load resistance of 67 omega, and expansion duration of 104 ms, respectively.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Jian , Zuo, Zhengxing , Jia, Boru et al. Performance Prediction and Optimization of Single-Piston Free Piston Expander-Linear Generator Based on Machine Learning and Genetic Algorithm [J]. | INTERNATIONAL JOURNAL OF ENERGY RESEARCH , 2024 , 2024 .
MLA Li, Jian et al. "Performance Prediction and Optimization of Single-Piston Free Piston Expander-Linear Generator Based on Machine Learning and Genetic Algorithm" . | INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2024 (2024) .
APA Li, Jian , Zuo, Zhengxing , Jia, Boru , Feng, Huihua , Zhang, Hongguang , Mei, Bingang . Performance Prediction and Optimization of Single-Piston Free Piston Expander-Linear Generator Based on Machine Learning and Genetic Algorithm . | INTERNATIONAL JOURNAL OF ENERGY RESEARCH , 2024 , 2024 .
Export to NoteExpress RIS BibTex
Parameters Optimization for Electrophoretic Deposition of Mn1.5Co1.5O4 on Ferritic Stainless Steel Based on Multi-Physical Simulation SCIE
期刊论文 | 2024 , 171 (6) | JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Abstract&Keyword Cite

Abstract :

Solid oxide fuel cells (SOFCs) are an effective and sustainable energy conversion technology. As operating temperatures decrease, metal interconnects and supports are widely employed in SOFCs. It is critical to apply a protective coat on ferritic stainless steel (FSS) to suppress Cr evaporation and element interdiffusion under high temperatures. Electrophoretic deposition (EPD) is a promising approach for depositing metal oxides on FSS substrate. Here, a method based on 3D multi-physical simulation and orthogonal experimental design was proposed to optimize deposition parameters, including applied voltage, deposition time, and electrode distance. The EPD process to deposit Mn1.5Co1.5O4 particles in a suspension of ethanol and isopropanol was simulated and the effects of these three factors on the film thickness and uniformity were analyzed. The results indicate that applied voltage has the greatest impact on deposition thickness, followed by deposition time and electrode distance. Meanwhile, deposition time exhibits a more significant effect on film unevenness than applied voltage. Additionally, the particle-fluid coupling phenomenon was analyzed during the EPD process. In practice, these deposition parameters must be selected appropriately and the deposition time must be controlled to obtain a uniform coating. The proposed method can reduce cost and shorten the design period.

Keyword :

electrophoretic deposition electrophoretic deposition orthogonal experiment orthogonal experiment solid oxide fuel cell solid oxide fuel cell multi-physical simulation multi-physical simulation Mn1.5Co1.5O4 powder Mn1.5Co1.5O4 powder

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhou, Yaqin , Mao, Jingwen , Wang, Enhua et al. Parameters Optimization for Electrophoretic Deposition of Mn1.5Co1.5O4 on Ferritic Stainless Steel Based on Multi-Physical Simulation [J]. | JOURNAL OF THE ELECTROCHEMICAL SOCIETY , 2024 , 171 (6) .
MLA Zhou, Yaqin et al. "Parameters Optimization for Electrophoretic Deposition of Mn1.5Co1.5O4 on Ferritic Stainless Steel Based on Multi-Physical Simulation" . | JOURNAL OF THE ELECTROCHEMICAL SOCIETY 171 . 6 (2024) .
APA Zhou, Yaqin , Mao, Jingwen , Wang, Enhua , Zhang, Hongguang . Parameters Optimization for Electrophoretic Deposition of Mn1.5Co1.5O4 on Ferritic Stainless Steel Based on Multi-Physical Simulation . | JOURNAL OF THE ELECTROCHEMICAL SOCIETY , 2024 , 171 (6) .
Export to NoteExpress RIS BibTex
Performance Analysis and Rapid Optimization of Vehicle ORC Systems Based on Numerical Simulation and Machine Learning SCIE
期刊论文 | 2024 , 17 (18) | ENERGIES
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

The organic Rankine cycle (ORC) system is an important technology for recovering energy from the waste heat of internal combustion engines, which is of significant importance for the improvement of fuel utilization. This study analyses the performance of vehicle ORC systems and proposes a rapid optimization method for enhancing vehicle ORC performance. This study constructed a numerical simulation model of an internal combustion engine-ORC waste heat recovery system based on GT-Suite software v2016. The impact of key operating parameters on the performance of two organic Rankine cycles: the simple organic Rankine cycle (SORC) and the recuperative organic Rankine cycle (RORC) was investigated. In order to facilitate real-time prediction and optimization of system performance, a data-driven rapid prediction model of the performance of the waste heat recovery system was constructed based on an artificial neural network. Meanwhile, the NSGA-II multi-objective algorithm was used to investigate the competitive relationship between different performance objective functions. Furthermore, the optimal operating parameters of the system were determined by utilizing the TOPSIS method. The results demonstrate that the highest thermal efficiencies of the SORC and RORC are 6.21% and 8.61%, respectively, the highest power outputs per unit heat transfer area (POPAs) are 6.98 kW/m2 and 8.99 kW/m2, respectively, the lowest unit electricity production costs (EPC) are 7.22 x 10-2 USD/kWh and 3.15 x 10-2 USD/kWh, respectively, and the lowest CO2 emissions are 2.85 ton CO2,eq and 3.11 ton CO2,eq, respectively. The optimization results show that the RORC exhibits superior thermodynamic and economic performance in comparison to the SORC, yet inferior environmental performance.

Keyword :

genetic algorithm genetic algorithm organic Rankine cycle organic Rankine cycle neural network neural network performance analysis and optimization performance analysis and optimization vehicle engine vehicle engine

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Xin , Chen, Xia , Xing, Chengda et al. Performance Analysis and Rapid Optimization of Vehicle ORC Systems Based on Numerical Simulation and Machine Learning [J]. | ENERGIES , 2024 , 17 (18) .
MLA Wang, Xin et al. "Performance Analysis and Rapid Optimization of Vehicle ORC Systems Based on Numerical Simulation and Machine Learning" . | ENERGIES 17 . 18 (2024) .
APA Wang, Xin , Chen, Xia , Xing, Chengda , Ping, Xu , Zhang, Hongguang , Yang, Fubin . Performance Analysis and Rapid Optimization of Vehicle ORC Systems Based on Numerical Simulation and Machine Learning . | ENERGIES , 2024 , 17 (18) .
Export to NoteExpress RIS BibTex
基于气动马达的微型压缩空气储能系统的试验研究
期刊论文 | 2023 , 12 (06) , 1854-1861 | 储能科学与技术
Abstract&Keyword Cite

Abstract :

压缩空气储能具有寿命长、成本低、环境污染小等优点而备受关注,然而压缩空气储能系统存在能量密度和效率低的问题,本工作提出了气动马达并联工作模式以提高压缩空气储能系统的输出功率、能量转换效率和经济性。通过对比分析了在气动马达并联工作和单独工作时,关键参数变化对气动马达输出功率、经济性和能量转换效率的影响规律。为了将微型压缩空气储能系统的膨胀机和压缩机一体化,本工作研究了气动马达正转和反转的性能。气动马达既作为膨胀机又作为压缩机,可以双模式运行,提高设备的利用率,降低压缩空气储能系统的成本。与可再生能源发电相结合的应用场景中,变工况运行是压缩空气储能系统面临的一个关键问题。以储气罐压力变化和负荷需求波动为代表的多种变工况条件在系统运行过程中常常同时存在,本工作在变工况条件下,通过试验研究了关键因素对压缩空气储能系统性能的影响情况。试验结果表明,采用气动马达并联工作模式可以提高压缩空气储能系统的输出功率、能量转换效率和经济性。当进气压力为10.5 bar(1 bar=100 kPa)时,气动马达和发电机输出功率的最大值约为660 W和380 W。

Keyword :

输出功率 输出功率 并联模式 并联模式 压缩空气储能系统 压缩空气储能系统 气动马达 气动马达

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 许永红 , 吴玉庭 , 张红光 et al. 基于气动马达的微型压缩空气储能系统的试验研究 [J]. | 储能科学与技术 , 2023 , 12 (06) : 1854-1861 .
MLA 许永红 et al. "基于气动马达的微型压缩空气储能系统的试验研究" . | 储能科学与技术 12 . 06 (2023) : 1854-1861 .
APA 许永红 , 吴玉庭 , 张红光 , 杨富斌 , 王焱 . 基于气动马达的微型压缩空气储能系统的试验研究 . | 储能科学与技术 , 2023 , 12 (06) , 1854-1861 .
Export to NoteExpress RIS BibTex
汽车文化公共选修课课程思政建设的思考与实践
期刊论文 | 2023 , 9 (10) , 27-30,35 | 高教学刊
Abstract&Keyword Cite

Abstract :

为了做好大学的"三全育人"工作,针对汽车文化这门公共选修课程,在建设课程思政方面进行思考与实践,如科学设计教学内容、精心挖掘课程思政元素、充分将课程思政元素与教学内容有机融合、高度重视现代教育技术手段和合理运用线下线上融合式教学等.通过任课教师和选课学生的共同努力,"三全育人"工作和课程思政建设均取得明显成效,汽车文化的教学工作获得选课学生的认可.

Keyword :

课程思政 课程思政 三全育人 三全育人 公共选修课 公共选修课 线下线上融合式教学 线下线上融合式教学 汽车文化 汽车文化

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 张红光 , 王焱 , 闫栋 et al. 汽车文化公共选修课课程思政建设的思考与实践 [J]. | 高教学刊 , 2023 , 9 (10) : 27-30,35 .
MLA 张红光 et al. "汽车文化公共选修课课程思政建设的思考与实践" . | 高教学刊 9 . 10 (2023) : 27-30,35 .
APA 张红光 , 王焱 , 闫栋 , 许永红 , 杨一帆 , 李怡霞 et al. 汽车文化公共选修课课程思政建设的思考与实践 . | 高教学刊 , 2023 , 9 (10) , 27-30,35 .
Export to NoteExpress RIS BibTex
课程思政与汽车文化中的中国故事
期刊论文 | 2023 , PageCount-页数: 4 (10) , 55-57,106 | 时代汽车
Abstract&Keyword Cite

Abstract :

为了落实“三全育人”工作,针对“汽车文化”公共选修课程,在“课程思政”育人方面进行了探索与实践,如做好“课程思政”的总体设计方案和实施方案、精心挖掘“课程思政”元素和中国元素、推出高质量的“课程思政”教学案例、讲好汽车文化中的中国故事、合理运用“线下线上融合式教学”模式等。通过师生双方的共同努力,“课程思政”建设成效明显,课程教学工作得到了学校关注和学生认可。

Keyword :

课程思政 课程思政 中国故事 中国故事 线下线上融合式教学 线下线上融合式教学 教学案例 教学案例 公共选修课 公共选修课 汽车文化 汽车文化

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 张红光 , 陈巍 , 王焱 et al. 课程思政与汽车文化中的中国故事 [J]. | 时代汽车 , 2023 , PageCount-页数: 4 (10) : 55-57,106 .
MLA 张红光 et al. "课程思政与汽车文化中的中国故事" . | 时代汽车 PageCount-页数: 4 . 10 (2023) : 55-57,106 .
APA 张红光 , 陈巍 , 王焱 , 许永红 , 杨富斌 , 张颖 . 课程思政与汽车文化中的中国故事 . | 时代汽车 , 2023 , PageCount-页数: 4 (10) , 55-57,106 .
Export to NoteExpress RIS BibTex
基于工质参数化建模的ORC不同构型热力学性能评价
期刊论文 | 2023 , (2) , 65-72 | 大电机技术
Abstract&Keyword Cite

Abstract :

有机朗肯循环(ORC)是实现中低温热能高效利用的主要技术之一.选择适宜的工质和循环结构可以显著提高ORC的热力学性能.本文基于工质参数化模型提出一种ORC构型和工质的热力学评价方法.首先,通过建立的工质参数化模型实现了ORC工质物性参数和循环参数的协同优化,从而获得不同构型ORC在不同热源条件下的最高热效率,进而确定了ORC的最佳构型和最适热源温度.然后,分析了在最佳构型下优化得到的工质物性参数与实际工质之间的差异.最终,在优化得到的工质物性参数的基础上,通过建立多元线性回归模型实现了不同工质ORC热力学性能的准确预测.结果表明,回热式结构是ORC的最佳循环结构,其最佳热源温度为300℃;利用基于优化得到的工质物性参数建立的多元线性回归模型预测不同工质热力学性能时,相对误差范围为0.8% ~-1%.

Keyword :

有机朗肯循环(ORC) 有机朗肯循环(ORC) 最适热源温度 最适热源温度 循环结构 循环结构 参数化模型 参数化模型 工质评价 工质评价

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 闫栋 , 杨富斌 , 张红光 et al. 基于工质参数化建模的ORC不同构型热力学性能评价 [J]. | 大电机技术 , 2023 , (2) : 65-72 .
MLA 闫栋 et al. "基于工质参数化建模的ORC不同构型热力学性能评价" . | 大电机技术 2 (2023) : 65-72 .
APA 闫栋 , 杨富斌 , 张红光 , 许永红 , 李安生 . 基于工质参数化建模的ORC不同构型热力学性能评价 . | 大电机技术 , 2023 , (2) , 65-72 .
Export to NoteExpress RIS BibTex
基于肖维勒准则与主元分析的有机朗肯循环神经网络建模方法
期刊论文 | 2023 , PageCount-页数: 7 (06) , 70-76 | 大电机技术
Abstract&Keyword Cite

Abstract :

随着人工神经网络技术的不断发展,有机朗肯循环(organic Rankine cycle, ORC)神经网络模型广泛应用于系统分析和优化领域。针对现有ORC神经网络模型计算量大、时间周期长和精度偏低的问题,本文提出了基于肖维勒准则与主元分析的ORC神经网络建模方法。采用肖维勒准则对ORC实验数据进行预处理,以去除异常数据,同时数据得到规范化处理。随后,采用主元分析对ORC特征进行矩阵变换和降维,以提取与ORC运行显著相关的特征向量。最后,通过实验数据验证了提出方法的有效性。该方法可在提高模型精度的同时,降低建模所需的时间。与基于原始数据的ORC神经网络模型相比,基于该方法的ORC神经网络模型建模所需时间降低了88.69%。同时,模型预测精度提高了19.93%。

Keyword :

肖维勒准则 肖维勒准则 人工神经网络建模 人工神经网络建模 主元分析 主元分析 有机朗肯循环 有机朗肯循环

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 平旭 , 杨富斌 , 张红光 et al. 基于肖维勒准则与主元分析的有机朗肯循环神经网络建模方法 [J]. | 大电机技术 , 2023 , PageCount-页数: 7 (06) : 70-76 .
MLA 平旭 et al. "基于肖维勒准则与主元分析的有机朗肯循环神经网络建模方法" . | 大电机技术 PageCount-页数: 7 . 06 (2023) : 70-76 .
APA 平旭 , 杨富斌 , 张红光 , 邢程达 , 杨海龙 , 王焱 . 基于肖维勒准则与主元分析的有机朗肯循环神经网络建模方法 . | 大电机技术 , 2023 , PageCount-页数: 7 (06) , 70-76 .
Export to NoteExpress RIS BibTex
能源动力学科研究生培养、思政教育与科研团队建设有机结合——基于十五年的探索
期刊论文 | 2023 , 9 (32) , 36-39 | 高教学刊
Abstract&Keyword Cite

Abstract :

为在能源动力学科领域培养德才兼备的高水平人才,北京工业大学车辆动力装置余热回收与电动化技术团队将研究生培养、思政教育与科研团队建设有机结合,进行十五年的探索与实践,如三全育人抓落实、胸怀大局真育才、校友资源强助力、吴仲华奖树标杆,及早为研究生的学业发展注入驱动力或强化责任感、重视培养研究生的批判性思维能力、尊重研究生的科研工作与研究成果、倡导和谐的团队氛围和风清气正的团队文化、构建混合型研究团队以及强化学术道德建设和研究生心理建设等。通过团队师生的共同努力,在研究生思政教育、研究生培养质量、科研成果等方面都取得明显的成效,科研团队建设进入良性发展轨道。

Keyword :

科研团队建设 科研团队建设 思政教育 思政教育 研究生培养 研究生培养 能源动力学科 能源动力学科 三全育人 三全育人

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 张红光 , 王焱 , 杨富斌 et al. 能源动力学科研究生培养、思政教育与科研团队建设有机结合——基于十五年的探索 [J]. | 高教学刊 , 2023 , 9 (32) : 36-39 .
MLA 张红光 et al. "能源动力学科研究生培养、思政教育与科研团队建设有机结合——基于十五年的探索" . | 高教学刊 9 . 32 (2023) : 36-39 .
APA 张红光 , 王焱 , 杨富斌 , 姚宝峰 , 许永红 , 平旭 . 能源动力学科研究生培养、思政教育与科研团队建设有机结合——基于十五年的探索 . | 高教学刊 , 2023 , 9 (32) , 36-39 .
Export to NoteExpress RIS BibTex
有机朗肯循环机器学习模型关键参数集识别
期刊论文 | 2023 , 44 (8) , 1368-1374 | 哈尔滨工程大学学报
Abstract&Keyword Cite

Abstract :

针对有机朗肯循环系统参数之间的强耦合关系,本文在试验的基础上提出了一种基于机器学习模型的关键参数集识别方法.在一套 10 kW级的有机朗肯循环试验系统上开展了不同热源条件下的系统性能试验;选取蒸发器出口压力和温度、冷凝器入口压力和温度、工质泵效率和膨胀机轴效率6 个系统参数为初始变量,以ORC系统热效率为目标变量,分别建立了有机朗肯循环系统多元线性、人工神经网络和支持向量机机器学习模型;最终确定了有机朗肯循环系统最佳的机器学习模型和关键参数集.研究表明:采用关键参数集可以使模型的平均误差降低13.36%,提高了模型的准确度.高准确度的有机朗肯循环系统机器学习模型可以提高模型的预测性能,进而为实现有机朗肯循环系统高效运行控制提供支撑.

Keyword :

主成分分析 主成分分析 有机朗肯循环 有机朗肯循环 支持向量机 支持向量机 试验数据 试验数据 关键参数集 关键参数集 多元线性 多元线性 热效率 热效率 人工神经网络 人工神经网络

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 闫栋 , 杨富斌 , 张红光 et al. 有机朗肯循环机器学习模型关键参数集识别 [J]. | 哈尔滨工程大学学报 , 2023 , 44 (8) : 1368-1374 .
MLA 闫栋 et al. "有机朗肯循环机器学习模型关键参数集识别" . | 哈尔滨工程大学学报 44 . 8 (2023) : 1368-1374 .
APA 闫栋 , 杨富斌 , 张红光 , 许永红 , 吴玉庭 . 有机朗肯循环机器学习模型关键参数集识别 . | 哈尔滨工程大学学报 , 2023 , 44 (8) , 1368-1374 .
Export to NoteExpress RIS BibTex
10| 20| 50 per page
< Page ,Total 49 >

Export

Results:

Selected

to

Format:
Online/Total:454/5947983
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.