• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:尉海军

Refining:

Source

Submit Unfold

Co-Author

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 12 >
Stabilizing oxygen by high-valance element doping for high-performance Li-rich layered oxides
期刊论文 | 2023 , 2 (1) | BATTERY ENERGY
Abstract&Keyword Cite

Abstract :

Lithium-rich layered oxides (LLOs) with high energy density and low cost are regarded as promising candidates for the next-generation cathode materials for lithium-ion batteries (LIBs). However, there are still some drawbacks of LLOs such as oxygen instability and irreversible structure reconstruction, which seriously limit their electrochemical performance and practical applications. Herein, the high-valence Ta doping is proposed to adjust the electronic structures of transition metals, which form strong Ta-O bonds and reduce the covalency of Ni-O bonds, thereby stabilizing the lattice oxygen and enhancing the structural/thermal stabilities of LLOs during electrochemical cycling. As a result, the optimized Ta-doped LLO can deliver a capacity retention of 80% and voltage decay of 0.34mV cycle(-1) after 650 cycles at 1C. This study enriches the fundamental understanding of the electronic structure adjustment of LLOs and contributes to the optimization of LLOs for high-energy LIBs.

Keyword :

voltage decay voltage decay elemental doping elemental doping oxygen release oxygen release lithium-rich layered oxides lithium-rich layered oxides lithium-ion battery lithium-ion battery

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Errui , Xiao, Dongdong , Wu, Tianhao et al. Stabilizing oxygen by high-valance element doping for high-performance Li-rich layered oxides [J]. | BATTERY ENERGY , 2023 , 2 (1) .
MLA Wang, Errui et al. "Stabilizing oxygen by high-valance element doping for high-performance Li-rich layered oxides" . | BATTERY ENERGY 2 . 1 (2023) .
APA Wang, Errui , Xiao, Dongdong , Wu, Tianhao , Wang, Boya , Wang, Yinzhong , Wu, Lingqiao et al. Stabilizing oxygen by high-valance element doping for high-performance Li-rich layered oxides . | BATTERY ENERGY , 2023 , 2 (1) .
Export to NoteExpress RIS BibTex
A propanesultone-based polymer electrolyte for high-energy solid-state lithium batteries with lithium-rich layered oxides SCIE
期刊论文 | 2023 , 11 (35) , 19118-19127 | JOURNAL OF MATERIALS CHEMISTRY A
Abstract&Keyword Cite

Abstract :

Polymer electrolyte-based solid-state lithium batteries (SSLBs) with lithium-rich layered oxide (LLO) cathode materials can provide high energy density and safety. However, the development of these batteries is hindered by the poor anti-oxidation ability of polymer electrolytes. Herein, a propanesultone-based polymer electrolyte (PPS-PE) is designed, and a wide electrochemical stability window (& SIM;5.0 V vs. Li+/Li) and high ion transference number (& SIM;0.78) at 25 & DEG;C can be achieved. The strong anti-oxidation ability of PPS-PE is contributed by the design of the chain-like molecular structure, and the hydrogen bond interactions are beneficial for inhibiting the anion movement of Li salt. The PPS-PE-based SSLBs with LLO cathode materials show characteristic charge/discharge profiles with a high initial discharge capacity of & SIM;270 mA h g-1 and good cycling stability at 25 & DEG;C. Therefore, this work not only reports a novel polymer electrolyte to couple with high-voltage cathodes but also promotes the application of LLO cathode materials in high-energy SSLBs. A propanesultone-based polymer electrolyte with high ion transference number of & SIM;0.78 and wide electrochemical stability window of & SIM;5.0 V has been designed for solid-state lithium batteries with lithium-rich layered oxide cathode materials.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yin, Xin , Zhao, Shu , Lin, Zhiyuan et al. A propanesultone-based polymer electrolyte for high-energy solid-state lithium batteries with lithium-rich layered oxides [J]. | JOURNAL OF MATERIALS CHEMISTRY A , 2023 , 11 (35) : 19118-19127 .
MLA Yin, Xin et al. "A propanesultone-based polymer electrolyte for high-energy solid-state lithium batteries with lithium-rich layered oxides" . | JOURNAL OF MATERIALS CHEMISTRY A 11 . 35 (2023) : 19118-19127 .
APA Yin, Xin , Zhao, Shu , Lin, Zhiyuan , Guo, Xianwei , Lou, Chenjie , Liu, Shiqi et al. A propanesultone-based polymer electrolyte for high-energy solid-state lithium batteries with lithium-rich layered oxides . | JOURNAL OF MATERIALS CHEMISTRY A , 2023 , 11 (35) , 19118-19127 .
Export to NoteExpress RIS BibTex
High-Voltage Spinel and Li2MnO3 Composite Structure Construction in LiMn0.8Ni0.2O2 for Manganese-Based Lithium-Ion Battery Cathode Materials SCIE
期刊论文 | 2023 , 13 (19) | ADVANCED ENERGY MATERIALS
Abstract&Keyword Cite

Abstract :

Layered Mn-based oxides are promising candidates for next-generation high-energy-density cathodes of rechargeable batteries owing to their prominent energy density and cost-effectiveness. However, the obvious structural degradation such as the layered-to-spinel transformation, associating with deteriorated electrochemical cycle stability, hinder their extensive applications in batteries. Herein, a composite structure is designed based on a Mn-based oxide of LiMn0.8Ni0.2O2 with a high-voltage spinel crystal domain pre-introduced into the parent layered structure, showing good structural stability during electrochemical process. Results show that Li2MnO3 crystal domain suffers from sluggish Li+ ions kinetics and structural transformation from layered to metastable spinel, while the pre-introduced high-voltage spinel crystal domain exhibits almost maintained structure, and the optimal performance near to theoretical capacity of LiMn0.8Ni0.2O2 cathode can be harvested after electrochemical activation. This design is useful for stabilizing the entire structure prior to the degradation of the parent structures, and the electrochemical contributions of layered Li2MnO3 and pre-introduced high-voltage spinel crystal domains are also discerned. This study provides new guidelines for designing high-performance composite-structure Mn-based cathode materials by pre-introduction of stable crystal domains.

Keyword :

pre-introduced high-voltage spinel pre-introduced high-voltage spinel Mn-based cathodes Mn-based cathodes lithium-ion batteries lithium-ion batteries Li2MnO3 Li2MnO3 composite structures composite structures

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Shiqi , Xiao, Dongdong , Wang, Boya et al. High-Voltage Spinel and Li2MnO3 Composite Structure Construction in LiMn0.8Ni0.2O2 for Manganese-Based Lithium-Ion Battery Cathode Materials [J]. | ADVANCED ENERGY MATERIALS , 2023 , 13 (19) .
MLA Liu, Shiqi et al. "High-Voltage Spinel and Li2MnO3 Composite Structure Construction in LiMn0.8Ni0.2O2 for Manganese-Based Lithium-Ion Battery Cathode Materials" . | ADVANCED ENERGY MATERIALS 13 . 19 (2023) .
APA Liu, Shiqi , Xiao, Dongdong , Wang, Boya , Wang, Lihang , Wu, Tianhao , Wang, Yinzhong et al. High-Voltage Spinel and Li2MnO3 Composite Structure Construction in LiMn0.8Ni0.2O2 for Manganese-Based Lithium-Ion Battery Cathode Materials . | ADVANCED ENERGY MATERIALS , 2023 , 13 (19) .
Export to NoteExpress RIS BibTex
Aluminum dendrite suppression by graphite coated anodes of Al-metal batteries SCIE
期刊论文 | 2023 , 11 (32) , 17020-17026 | JOURNAL OF MATERIALS CHEMISTRY A
Abstract&Keyword Cite

Abstract :

Rechargeable aluminum batteries (RABs) are regarded as a promising energy storage system considering the high safety, rich abundance, and high capacity of aluminum. One of the critical challenges for RABs is the dendrite growth of Al, which arouses significant stability and safety issues. In this work, we demonstrate that a graphite coating layer can effectively protect the Al anode against dendrite growth. The Al metal batteries with graphite-coated Al anodes display lower overpotential (43 mV) and better cycling stability (400 h) than those with bare Al. Based on spike-like voltage profiles, metallic Al is found to be preferentially plated on the graphite layer rather than the Al substrate. In addition, the rough graphite coating layer with abundant interspace further regulates the plating/stripping behavior and accommodates the volume change of the Al anode. The dendrite growth of Al is significantly suppressed by graphite coating, which also favors high-performance RABs with a graphite cathode. This study sheds light on the facile and efficient suppression of Al dendrite growth toward RABs.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 He, Shiman , Wang, Jie , Zhang, Xu et al. Aluminum dendrite suppression by graphite coated anodes of Al-metal batteries [J]. | JOURNAL OF MATERIALS CHEMISTRY A , 2023 , 11 (32) : 17020-17026 .
MLA He, Shiman et al. "Aluminum dendrite suppression by graphite coated anodes of Al-metal batteries" . | JOURNAL OF MATERIALS CHEMISTRY A 11 . 32 (2023) : 17020-17026 .
APA He, Shiman , Wang, Jie , Zhang, Xu , Chu, Weiqin , Zhao, Shu , He, Daping et al. Aluminum dendrite suppression by graphite coated anodes of Al-metal batteries . | JOURNAL OF MATERIALS CHEMISTRY A , 2023 , 11 (32) , 17020-17026 .
Export to NoteExpress RIS BibTex
High-Voltage Deep Eutectic Solvent Electrolyte with Fluorine-Substituted Acetamide Additive for Aluminum-ion Battery SCIE
期刊论文 | 2023 , 34 (3) | ADVANCED FUNCTIONAL MATERIALS
Abstract&Keyword Cite

Abstract :

The high-voltage stability of electrolytes profoundly determines electrochemical reactions, which is still one of the major obstacles for developing advanced Al-ion batteries (AIBs). Herein, a fluorine-adjustment strategy is proposed to improve the high-voltage stability of a low-cost AlCl3/acetamide (AcA) deep eutectic solvent electrolyte. By using a fluorine-substituted AcA additive, the AlCl3/AcA electrolyte exhibits a lifted oxidation onset potential from 2.21 to 2.78 V versus Al3+/Al. Based on a series of structural investigations, it is found that the additive can adjust the coordination configurations and improve the anti-oxidation capability of electrolytes. Moreover, the additive induces an F-rich interphase layer, which can stabilize the plating/stripping reactions of Al electrode with accelerated kinetics. Based on the optimized electrolyte, a high-voltage Al-S battery relying on the S cationic redox shows good performance with little voltage fading for 300 cycles. This study provides important insights into the exploration of high-performance and low-cost electrolytes for AIBs.

Keyword :

fluorine-substituted additives fluorine-substituted additives Al-ion batteries Al-ion batteries AlFx-rich interphase AlFx-rich interphase high-voltage stability high-voltage stability deep eutectic solvent electrolytes deep eutectic solvent electrolytes

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Chu, Weiqin , Zhang, Xu , Zhao, Shu et al. High-Voltage Deep Eutectic Solvent Electrolyte with Fluorine-Substituted Acetamide Additive for Aluminum-ion Battery [J]. | ADVANCED FUNCTIONAL MATERIALS , 2023 , 34 (3) .
MLA Chu, Weiqin et al. "High-Voltage Deep Eutectic Solvent Electrolyte with Fluorine-Substituted Acetamide Additive for Aluminum-ion Battery" . | ADVANCED FUNCTIONAL MATERIALS 34 . 3 (2023) .
APA Chu, Weiqin , Zhang, Xu , Zhao, Shu , Tang, Mingxue , Li, Shuaixia , Liu, Shiqi et al. High-Voltage Deep Eutectic Solvent Electrolyte with Fluorine-Substituted Acetamide Additive for Aluminum-ion Battery . | ADVANCED FUNCTIONAL MATERIALS , 2023 , 34 (3) .
Export to NoteExpress RIS BibTex
Mn-based cathode materials for rechargeable batteries SCIE
期刊论文 | 2023 | SCIENCE CHINA-CHEMISTRY
Abstract&Keyword Cite

Abstract :

The rapid expansion of renewable energies asks for great progress of energy-storage technologies for sustainable energy supplies, which raises the compelling demand of high-performance rechargeable batteries. To satisfy the huge demand from the coming energy-storage market, the resource and cost-effectiveness of rechargeable batteries become more and more important. Manganese (Mn) as a key transition element with advantages including high abundance, low cost, and low toxicity derives various kinds (spinels, layered oxides, polyanions, Prussian blue analogs, etc.) of high-performance Mn-based electrode materials, especially cathodes, for rechargeable batteries ranging from Li-ion batteries, Na-ion batteries, aqueous batteries, to multivalent metal-ion batteries. It is anticipated that Mn-based materials with Mn as the major transition-metal element will constitute a flourishing family of Mn-based rechargeable batteries (MnRBs) for large-scale and differentiated energy-storage applications. On the other hand, several critical issues including Jahn-Teller effect, Mn dissolution, and O release greatly hinder the pace of MnRBs, which require extensive material optimizations and battery/system improvements. This review aims to provide an investigation about Mn-based materials and batteries for the coming energy-storage demands, with compelling issues and challenges that must be overcome.

Keyword :

manganese manganese energy storage energy storage Mn-based rechargeable batteries Mn-based rechargeable batteries cathode materials cathode materials

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhang, Xu , Liu, Shiqi , Wang, Boya et al. Mn-based cathode materials for rechargeable batteries [J]. | SCIENCE CHINA-CHEMISTRY , 2023 .
MLA Zhang, Xu et al. "Mn-based cathode materials for rechargeable batteries" . | SCIENCE CHINA-CHEMISTRY (2023) .
APA Zhang, Xu , Liu, Shiqi , Wang, Boya , Wang, Guoqing , Du, Haozhe , Wang, Xuanyu et al. Mn-based cathode materials for rechargeable batteries . | SCIENCE CHINA-CHEMISTRY , 2023 .
Export to NoteExpress RIS BibTex
Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries SCIE
期刊论文 | 2023 | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Abstract&Keyword Cite

Abstract :

Poly(ethylene oxide) has been widely investigated as a potential separator for solid-state lithium metal batteries. However, its applications were significantly restricted by low ionic conductivity and a narrow electrochemical stability window (<4.0 V vs Li/Li+) at room temperature. Herein, a novel molecular self-assembled ether-based polyrotaxane electrolyte was designed using different functional units and prepared by threading cyclic 18-crown ether-6 (18C6) to linear poly(ethylene glycol) (PEG) via intermolecular hydrogen bond and terminating with hexamethylene diisocyanate trimer (HDIt), which was strongly confirmed by local structure-sensitive solid/liquid-state nuclear magnetic resonance (NMR) techniques. The designed electrolyte has shown an obviously increased room-temperature ionic conductivity of 3.48 x 10-4 S cm-1 compared to 1.12 x 10-5 S cm-1 without assembling polyrotaxane functional units, contributing to the enhanced cycling stability of batteries with both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathode materials. This advanced molecular self-assembled strategy provides a new paradigm in designing solid polymer electrolytes with demanded performance for lithium metal batteries.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Ding, Peipei , Wu, Lingqiao , Lin, Zhiyuan et al. Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries [J]. | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY , 2023 .
MLA Ding, Peipei et al. "Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries" . | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023) .
APA Ding, Peipei , Wu, Lingqiao , Lin, Zhiyuan , Lou, Chenjie , Tang, Mingxue , Guo, Xianwei et al. Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries . | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY , 2023 .
Export to NoteExpress RIS BibTex
Grain Morphology and Microstructure Control in High-Stable Ni-Rich Layered Oxide Cathodes SCIE
期刊论文 | 2023 , 33 (31) | ADVANCED FUNCTIONAL MATERIALS
Abstract&Keyword Cite

Abstract :

Ni-rich layered oxides are promising cathode material for high-energy-density lithium-ion batteries (LIBs). However, they suffer from poor capacity retention due to unstable structures. Herein, a strategy of high-valence W doping is put forward to tune the nanometer-sized crystal domains and reshape the primary particle textures, which can stabilize the structure against the formation of microcracks to improve the electrochemical performance. The Ni-rich layered oxide with 0.5 mol% doped W delivers a high-capacity retention of 91.6% up to 300 cycles under 1 C. Such an improved performance is ascribed to the pre-introduced nanometer-sized spinel and rock-salt crystal domains, which remarkably improve the structure stability, and the radially alignment of primary particles, and effectively reduce the anisotropic mechanical strain in deep charge states. This study sheds light on the design of high-performance Co-less Ni-rich cathode materials through the adjustment of microstructures via a small amount of suitable dopants.

Keyword :

W doping W doping Ni-rich layered oxides Ni-rich layered oxides nanosized crystal domains nanosized crystal domains structural degradation structural degradation primary particles primary particles

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Lin , Zhu, Baofu , Xiao, Dongdong et al. Grain Morphology and Microstructure Control in High-Stable Ni-Rich Layered Oxide Cathodes [J]. | ADVANCED FUNCTIONAL MATERIALS , 2023 , 33 (31) .
MLA Wang, Lin et al. "Grain Morphology and Microstructure Control in High-Stable Ni-Rich Layered Oxide Cathodes" . | ADVANCED FUNCTIONAL MATERIALS 33 . 31 (2023) .
APA Wang, Lin , Zhu, Baofu , Xiao, Dongdong , Zhang, Xu , Wang, Boya , Li, Haifeng et al. Grain Morphology and Microstructure Control in High-Stable Ni-Rich Layered Oxide Cathodes . | ADVANCED FUNCTIONAL MATERIALS , 2023 , 33 (31) .
Export to NoteExpress RIS BibTex
Stacking Faults Inducing Oxygen Anion Activities in Li2MnO3 SCIE
期刊论文 | 2023 , 35 (22) | ADVANCED MATERIALS
Abstract&Keyword Cite

Abstract :

Controllable anionic redox for a transformational increase in the energy density is the pursuit of next generation Li-ion battery cathode materials. Its activation mechanism is coupled with the local coordination environment around O, which posts experimental challenges for control. Here, the tuning capability of anionic redox is shown by varying O local environment via experimentally controlling the density of stacking faults in Li2MnO3, the parent compound of Li-rich oxides. By combining computational analysis and spectroscopic study, it is quantitatively revealed that more stacking faults can trigger smaller Li-O-Li bond angles and larger Li-O bond distance in local Li-rich environments and subsequently activate oxygen redox reactivity, which in turn enhances the reactivity of Mn upon the following reduction process. This study highlights the critical role of local structure environment in tuning the anionic reactivity, which provides guidance in designing high-capacity layered cathodes by appropriately adjusting stacking faults.

Keyword :

Li-O-Li bond angles Li-O-Li bond angles oxygen anion activities oxygen anion activities stacking faults stacking faults Li-ion batteries Li-ion batteries Li2MnO3 Li2MnO3

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Boya , Zhuo, Zengqing , Li, Haifeng et al. Stacking Faults Inducing Oxygen Anion Activities in Li2MnO3 [J]. | ADVANCED MATERIALS , 2023 , 35 (22) .
MLA Wang, Boya et al. "Stacking Faults Inducing Oxygen Anion Activities in Li2MnO3" . | ADVANCED MATERIALS 35 . 22 (2023) .
APA Wang, Boya , Zhuo, Zengqing , Li, Haifeng , Liu, Shiqi , Zhao, Shu , Zhang, Xu et al. Stacking Faults Inducing Oxygen Anion Activities in Li2MnO3 . | ADVANCED MATERIALS , 2023 , 35 (22) .
Export to NoteExpress RIS BibTex
“三全育人”人才培养模式探索与实践——科教相融相促的视角
期刊论文 | 2022 , PageCount-页数: 3 (03) , 61-63 | 北京教育(高教)
Abstract&Keyword Cite

Abstract :

人才培养乃党之大计、国之大计。以习近平新时代中国特色社会主义思想科学体系为引领,把立德树人作为根本任务,将思政教育融入科研、教学和实践教育的各个环节,强化“强国一刻钟”学习活动的思想价值引领作用,形成了一套可示范推广的多位一体的育人长效机制,形成了“科教相融相促”的人才培养体系,并取得了良好的育人成效。

Keyword :

“三全育人” “三全育人” 科教相融相促 科教相融相促 “强国一刻钟” “强国一刻钟”

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 尉海军 , 王琳 . “三全育人”人才培养模式探索与实践——科教相融相促的视角 [J]. | 北京教育(高教) , 2022 , PageCount-页数: 3 (03) : 61-63 .
MLA 尉海军 et al. "“三全育人”人才培养模式探索与实践——科教相融相促的视角" . | 北京教育(高教) PageCount-页数: 3 . 03 (2022) : 61-63 .
APA 尉海军 , 王琳 . “三全育人”人才培养模式探索与实践——科教相融相促的视角 . | 北京教育(高教) , 2022 , PageCount-页数: 3 (03) , 61-63 .
Export to NoteExpress RIS BibTex
10| 20| 50 per page
< Page ,Total 12 >

Export

Results:

Selected

to

Format:
Online/Total:3437/2498897
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.