• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:严爱军

Refining:

Source

Submit Unfold

Co-Author

Submit Unfold

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 11 >
Stochastic configuration network modeling method based on information superposition and mixture correntropy SCIE
期刊论文 | 2024 | INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
Abstract&Keyword Cite

Abstract :

To improve the generalizability and robustness of stochastic configuration networks (SCNs), this paper proposes a robust modeling method based on information superposition and mixture correntropy. First, the mapping information of the (sigmoid) activation function and its derivative function is superimposed, and the hidden layer parameters are randomly assigned through a supervisory mechanism to improve the diversity of the hidden layer mapping. Second, mixture correntropy is used to construct a robust loss function, and different Gaussian kernels are used to measure the contribution of training samples to suppress the negative impact of data noise on the accuracy of the model. Finally, the performance of the proposed modeling method is tested on functional approximation, four benchmark datasets, and historical data from the municipal solid waste incineration process. The experimental results show that the modeling method proposed in this paper has advantages in terms of generalizability and robustness.

Keyword :

Stochastic configuration networks Stochastic configuration networks Mixture correntropy Mixture correntropy Robust modeling Robust modeling Information superposition Information superposition

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yan, Aijun , Hu, Kaicheng , Wang, Dianhui . Stochastic configuration network modeling method based on information superposition and mixture correntropy [J]. | INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS , 2024 .
MLA Yan, Aijun 等. "Stochastic configuration network modeling method based on information superposition and mixture correntropy" . | INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS (2024) .
APA Yan, Aijun , Hu, Kaicheng , Wang, Dianhui . Stochastic configuration network modeling method based on information superposition and mixture correntropy . | INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS , 2024 .
Export to NoteExpress RIS BibTex
Data-Driven Multitarget Online Modeling of the Municipal Solid Waste Incineration Process SCIE
期刊论文 | 2024 | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
Abstract&Keyword Cite

Abstract :

To accurately predict the furnace temperature and flue gas oxygen content of the municipal solid waste incineration (MSWI) process under variable operating conditions, a data-driven multitarget online predictive modeling method based on an improved stochastic configuration network (SCN) is proposed in this article. This method configures the input weights and biases of the new hidden layer nodes of the SCN through a competitive guidance strategy. The model output weights are sparsely constrained using a matrix elastic net, the modeling accuracy is improved by using the correlation between the furnace temperature and flue gas oxygen content. On this basis, the output weights of the model are recursively updated using a sparse constrained direction forgetting algorithm to improve the online prediction accuracy. Finally, the performance of the proposed method is validated using historical data from the MSWI process. The experimental results show that the proposed multitarget prediction model is adaptive and can accurately predict the trends of furnace temperature and flue gas oxygen content under variable operating conditions.

Keyword :

Municipal solid waste incineration (MSWI) Municipal solid waste incineration (MSWI) competitive guidance strategy competitive guidance strategy Solid modeling Solid modeling stochastic configuration network (SCN) stochastic configuration network (SCN) Furnaces Furnaces Accuracy Accuracy direction forgetting algorithm direction forgetting algorithm Atmospheric modeling Atmospheric modeling Waste materials Waste materials multitarget modeling multitarget modeling Incineration Incineration Predictive models Predictive models

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yan, Aijun , Hu, Kaicheng . Data-Driven Multitarget Online Modeling of the Municipal Solid Waste Incineration Process [J]. | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS , 2024 .
MLA Yan, Aijun 等. "Data-Driven Multitarget Online Modeling of the Municipal Solid Waste Incineration Process" . | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2024) .
APA Yan, Aijun , Hu, Kaicheng . Data-Driven Multitarget Online Modeling of the Municipal Solid Waste Incineration Process . | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS , 2024 .
Export to NoteExpress RIS BibTex
A Recurrent Stochastic Configuration Network for Dynamic System Modeling and Its Application SCIE
期刊论文 | 2024 , 33 (06) | INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS
Abstract&Keyword Cite

Abstract :

In order to model nonlinear dynamic systems quickly and accurately, a recurrent stochastic configuration network (RSCN) with universal approximation ability is proposed in this paper. The method consists of network parameter learning and network structure determination. The network parameter learning strategy consists of input weights and the biases of hidden nodes generated randomly through a supervision mechanism, while the output weights of hidden nodes are determined by solving the least-squares problem. The network structure is determined incrementally by the training error of a single-layer recurrent neural network. The effectiveness of RSCN is tested and evaluated by using three nonlinear dynamic functions and historical data from a municipal solid waste incineration (MSWI) process. The experimental results show that the proposed method can improve modeling accuracy and reduce training time, which is valuable for applications in the field of industrial process modeling.

Keyword :

dynamic modeling dynamic modeling Recurrent stochastic configuration network Recurrent stochastic configuration network randomized method randomized method universal approximation property universal approximation property

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yan, Aijun , Guo, Jingcheng . A Recurrent Stochastic Configuration Network for Dynamic System Modeling and Its Application [J]. | INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS , 2024 , 33 (06) .
MLA Yan, Aijun 等. "A Recurrent Stochastic Configuration Network for Dynamic System Modeling and Its Application" . | INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 33 . 06 (2024) .
APA Yan, Aijun , Guo, Jingcheng . A Recurrent Stochastic Configuration Network for Dynamic System Modeling and Its Application . | INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS , 2024 , 33 (06) .
Export to NoteExpress RIS BibTex
A Review of the Development and Future Challenges of Case-Based Reasoning SCIE
期刊论文 | 2024 , 14 (16) | APPLIED SCIENCES-BASEL
Abstract&Keyword Cite

Abstract :

Case-based reasoning (CBR), which is based on the cognitive assumption that similar problems have similar solutions, is an important problem-solving and learning method in the field of artificial intelligence (AI). In this article, the development of CBR is reviewed, and the major challenges of CBR are summarized. The paper is organized into four parts. First, the basic framework and concepts of CBR are introduced. Then, the developed technology and innovative work that were designed to solve problems by CBR are summarized. Then, the application fields of CBR are summarized. Finally, according to the idea of deep learning and interpretable AI, the main challenges for the future development of CBR are proposed.

Keyword :

case base maintenance case base maintenance case-based reasoning case-based reasoning deep learning deep learning case adaptation case adaptation problem solving problem solving case retrieval case retrieval similarity measure similarity measure

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yan, Aijun , Cheng, Zijun . A Review of the Development and Future Challenges of Case-Based Reasoning [J]. | APPLIED SCIENCES-BASEL , 2024 , 14 (16) .
MLA Yan, Aijun 等. "A Review of the Development and Future Challenges of Case-Based Reasoning" . | APPLIED SCIENCES-BASEL 14 . 16 (2024) .
APA Yan, Aijun , Cheng, Zijun . A Review of the Development and Future Challenges of Case-Based Reasoning . | APPLIED SCIENCES-BASEL , 2024 , 14 (16) .
Export to NoteExpress RIS BibTex
案例推理分类器的权重分配及案例库维护方法 CSCD
期刊论文 | 2021 , 41 (4) , 1071-1077 | 计算机应用
Abstract&Keyword Cite

Abstract :

由于特征权重分配以及案例库维护对案例推理(CBR)分类器的性能有重要影响,提出了用蚁狮(ALO)算法来分配权重且用高斯混合模型的期望最大化算法(GMMEM)进行案例库维护的案例推理算法模型——AGECBR(Ant Lion and Expectation Maximization of Gaussian Mixture Model Case-Based Reasoning).首先采用蚁狮算法对特征权重进行分配,在这个过程中将案例推理分类准确率作为蚁狮算法对特征权重进行迭代寻优的适应度函数,以此实现特征权重的优化分配;然后,使用高斯混合模型的期望最大化算法对案例库中的各案例进行聚类分析,并删除其中的噪声案例和冗余案例,从而实现案例库的维护.在UCI标准数据集上进行了实验,所提模型AGECBR比反向传播(BP)、k-近邻(kNN)等分类算法平均分类准确率提升了3.83~5.44个百分点.实验结果表明,AGECBR能够使案例推理分类准确率得到有效改进.

Keyword :

案例库维护 案例库维护 权重分配 权重分配 蚁狮算法 蚁狮算法 分类器 分类器 案例推理 案例推理

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 严爱军 , 魏志远 . 案例推理分类器的权重分配及案例库维护方法 [J]. | 计算机应用 , 2021 , 41 (4) : 1071-1077 .
MLA 严爱军 等. "案例推理分类器的权重分配及案例库维护方法" . | 计算机应用 41 . 4 (2021) : 1071-1077 .
APA 严爱军 , 魏志远 . 案例推理分类器的权重分配及案例库维护方法 . | 计算机应用 , 2021 , 41 (4) , 1071-1077 .
Export to NoteExpress RIS BibTex
城市生活垃圾热值的特征变量选择方法及预测建模 CSCD
期刊论文 | 2021 , 47 (08) , 874-885 | 北京工业大学学报
Abstract&Keyword Cite

Abstract :

在垃圾焚烧的过程中,垃圾热值的波动会影响垃圾焚烧的稳定性.为了实现城市生活垃圾热值的实时在线预测以及变化趋势预测,采用模糊神经网络软测量方法,利用焚烧发电厂在线运行数据作为输入,实现垃圾热值的实时预测功能.首先采用互信息方法从若干特征变量中剔除部分无关变量;然后将模糊神经网络和粒子群优化算法结合起来从上述选择出的特征变量中进一步剔除冗余变量,从而确定预测垃圾热值的输入变量,并从中训练出垃圾热值的模糊神经网络预测模型;最后通过采集的样本数据进行性能测试.结果表明该方法有较好的预测准确率和实时性,适用于垃圾热值的在线预测.

Keyword :

热值 热值 城市生活垃圾 城市生活垃圾 实时预测 实时预测 模糊神经网络 模糊神经网络 特征选择 特征选择 互信息 互信息

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 丁晨曦 , 严爱军 . 城市生活垃圾热值的特征变量选择方法及预测建模 [J]. | 北京工业大学学报 , 2021 , 47 (08) : 874-885 .
MLA 丁晨曦 等. "城市生活垃圾热值的特征变量选择方法及预测建模" . | 北京工业大学学报 47 . 08 (2021) : 874-885 .
APA 丁晨曦 , 严爱军 . 城市生活垃圾热值的特征变量选择方法及预测建模 . | 北京工业大学学报 , 2021 , 47 (08) , 874-885 .
Export to NoteExpress RIS BibTex
基于文化鲸鱼优化算法的特征权重优化分配方法 CSCD
期刊论文 | 2021 , 47 (11) , 1230-1238 | 北京工业大学学报
Abstract&Keyword Cite

Abstract :

为了解决基于数据的预测模型中特征权重分配不合理的问题,将鲸鱼优化算法(whale optimization algorithm, WOA)纳入文化算法的种群空间中,获得了一种文化鲸鱼优化算法(cultural whale optimization algorithm, CWOA)以用于特征权重的优化分配.首先,将预测模型的均方根误差作为适应度函数;然后,采用WOA在种群空间中对特征权重进行迭代寻优;接着,通过接受函数将种群空间中的最优权重置于信仰空间中进行性能评价与双变异演化,以此形成形势知识和规范知识;最后,通过影响函数对种群空间中的权重进行更新指导,如此循环,从而得到特征权重的优化分配结果...

Keyword :

信仰空间 信仰空间 鲸鱼优化算法 鲸鱼优化算法 权重分配 权重分配 文化算法 文化算法 种群空间 种群空间 案例推理 案例推理

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 严爱军 , 曹付起 . 基于文化鲸鱼优化算法的特征权重优化分配方法 [J]. | 北京工业大学学报 , 2021 , 47 (11) : 1230-1238 .
MLA 严爱军 等. "基于文化鲸鱼优化算法的特征权重优化分配方法" . | 北京工业大学学报 47 . 11 (2021) : 1230-1238 .
APA 严爱军 , 曹付起 . 基于文化鲸鱼优化算法的特征权重优化分配方法 . | 北京工业大学学报 , 2021 , 47 (11) , 1230-1238 .
Export to NoteExpress RIS BibTex
Case Weighted Similarity Measure Optimization Method Based On Black Hole Cuckoo Search Algorithm CPCI-S
期刊论文 | 2021 , 6269-6274 | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC)
Abstract&Keyword Cite

Abstract :

This paper proposes an optimization method based on the Black Hole Cuckoo Search Algorithm (BH-CS) to improve the accuracy of the weighted similarity measure in the case-based reasoning (CBR) model. First, take the root mean square error of the case-based reasoning prediction model as the fitness function. Secondly, use the Levy flight of the Cuckoo Search algorithm to update the feature weights in the weighted similarity measure method and evaluate the optimal weights from them. Then, randomly generate new feature weights with some probability. Finally, use the Black Hole algorithm to optimize feature weights further to obtain optimal weights and optimize the case similarity measure. The optimization method was tested using UCI standard data set. The results show that the BH-CS algorithm has an advantage over other algorithms in improving the accuracy of case similarity measures and can effectively improve the prediction accuracy of the CBR model.

Keyword :

Weighted Similarity Measure Weighted Similarity Measure Cuckoo Search Algorithm Cuckoo Search Algorithm Black Hole Algorithm Black Hole Algorithm Feature Weight Feature Weight

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yan, Aijun , Li, Jiaxuan . Case Weighted Similarity Measure Optimization Method Based On Black Hole Cuckoo Search Algorithm [J]. | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) , 2021 : 6269-6274 .
MLA Yan, Aijun 等. "Case Weighted Similarity Measure Optimization Method Based On Black Hole Cuckoo Search Algorithm" . | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) (2021) : 6269-6274 .
APA Yan, Aijun , Li, Jiaxuan . Case Weighted Similarity Measure Optimization Method Based On Black Hole Cuckoo Search Algorithm . | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) , 2021 , 6269-6274 .
Export to NoteExpress RIS BibTex
Feature Weight Optimization Method Based on t-Memetic Algorithm CPCI-S
期刊论文 | 2021 , 6275-6280 | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC)
Abstract&Keyword Cite

Abstract :

Feature weights have a significant effect on the accuracy of case-based reasoning (CBR) prediction models. Therefore, this paper proposes a feature weight optimization method combining a t-distribution mutation operator and a memetic algorithm (t-memetic). In this method, the mean absolute percentage error of the CBR prediction model is defined as a fitness function, and the memetic framework is used to realize the optimization process for case weights. A sparrow search algorithm and adaptive t-distribution mutation operator are used to realize the global search of the case feature weights, and the simulated annealing algorithm is used to perform a local search of the weighted individuals with the best fitness for the current population. Five UCI standard regression datasets are used respectively to test the effectiveness of the proposed method and compare it with classical feature weight optimization algorithms. The results show that the CBR prediction model has the highest accuracy after the weights are optimized by the t-memetic algorithm, which indicates that the proposed weight optimization method can be used effectively in CBR prediction models.

Keyword :

Case-based reasoning Case-based reasoning t-distribution mutation operator t-distribution mutation operator Feature weights Feature weights Memetic algorithm Memetic algorithm Sparrow search Sparrow search Simulated annealing Simulated annealing

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yan, Aijun , Guo, Yidong . Feature Weight Optimization Method Based on t-Memetic Algorithm [J]. | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) , 2021 : 6275-6280 .
MLA Yan, Aijun 等. "Feature Weight Optimization Method Based on t-Memetic Algorithm" . | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) (2021) : 6275-6280 .
APA Yan, Aijun , Guo, Yidong . Feature Weight Optimization Method Based on t-Memetic Algorithm . | 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) , 2021 , 6275-6280 .
Export to NoteExpress RIS BibTex
城市生活垃圾焚烧过程监控半实物仿真平台研发 CSCD
期刊论文 | 2021 , 33 (6) , 1427-1435 | 系统仿真学报
Abstract&Keyword Cite

Abstract :

为了城市生活垃圾焚烧过程建模、控制、优化等方法的研究测试,将实物控制系统与虚拟对象结合起来研发了一种具有三层结构的半实物仿真平台.该平台的实物控制系统由智能控制优化层和基础控制层组成;虚拟对象层包括软件模拟的仪表、执行机构装置和焚烧过程模型.开发了人机界面、设备与参数的监控、焚烧过程模型以及OPC通讯等软件.测试了智能控制优化层和基础控制层的各项功能,结果表明:该平台的软、硬件部分运行稳定而可靠,能够有效而正确反映焚烧过程的变化.

Keyword :

城市生活垃圾 城市生活垃圾 半实物仿真 半实物仿真 焚烧过程 焚烧过程 监控 监控

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 严爱军 , 夏恒 , 刘溪芷 . 城市生活垃圾焚烧过程监控半实物仿真平台研发 [J]. | 系统仿真学报 , 2021 , 33 (6) : 1427-1435 .
MLA 严爱军 等. "城市生活垃圾焚烧过程监控半实物仿真平台研发" . | 系统仿真学报 33 . 6 (2021) : 1427-1435 .
APA 严爱军 , 夏恒 , 刘溪芷 . 城市生活垃圾焚烧过程监控半实物仿真平台研发 . | 系统仿真学报 , 2021 , 33 (6) , 1427-1435 .
Export to NoteExpress RIS BibTex
10| 20| 50 per page
< Page ,Total 11 >

Export

Results:

Selected

to

Format:
Online/Total:461/5946786
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.