Query:
学者姓名:张延华
Refining:
Year
Type
Indexed by
Source
Complex
Co-Author
Language
Clean All
Abstract :
Heterogeneous networks (HetNets) with end-to-end (E2E) network slicing are regarded as effective approaches to meet diverse service requirements from vertical industries. Due to the dense deployment of base stations (BSs) and the complicated associations between BSs and E2E network slices (NSs) in the scenario, the handoff problem faces challenges of the huge system state space and handoff action space and the considerable communication overhead. In this paper, we take these issues into account and consider a distributed E2E NS handoff decision framework in the HetNet. A decentralized Markov decision process (DEC-MDP)-based model is formulated for the distributed E2E NS handoff problem, and the jointly observable and random characteristics of the DEC-MDP are analyzed. To obtain a theoretical performance reference, the original distributed E2E NS handoff problem is simplified, and a Nash equilibrium-based performance bound is given. More practically, the multi-agent double deep Q-network-based distributed handoff (MA-DDQN-DH) algorithm with the centralized training and decentralized executing framework is proposed. Simulation results show that the Nash equilibrium-based performance bound is reasonable, and the proposed MA-DDQN-DH algorithm performs well in the comparison.
Keyword :
Heuristic algorithms Heuristic algorithms Bandwidth Bandwidth Distributed network slice handoff Distributed network slice handoff decentralized Markov decision process decentralized Markov decision process Nash equilibrium Nash equilibrium Quality of service Quality of service Real-time systems Real-time systems Costs Costs multi-agent deep reinforcement learning multi-agent deep reinforcement learning Training Training Network slicing Network slicing
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wu, Wenjun , Yang, Feng , Gao, Yang et al. Distributed Handoff Problem in Heterogeneous Networks With End-to-End Network Slicing: Decentralized Markov Decision Process-Based Modeling and Solution [J]. | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , 2022 , 21 (12) : 11222-11236 . |
MLA | Wu, Wenjun et al. "Distributed Handoff Problem in Heterogeneous Networks With End-to-End Network Slicing: Decentralized Markov Decision Process-Based Modeling and Solution" . | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 21 . 12 (2022) : 11222-11236 . |
APA | Wu, Wenjun , Yang, Feng , Gao, Yang , Wang, Xiaoxi , Si, Pengbo , Zhang, Yanhua et al. Distributed Handoff Problem in Heterogeneous Networks With End-to-End Network Slicing: Decentralized Markov Decision Process-Based Modeling and Solution . | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS , 2022 , 21 (12) , 11222-11236 . |
Export to | NoteExpress RIS BibTex |
Abstract :
Driven by numerous emerging mobile devices and various Quality-of-Service (QoS) requirements, mobile-edge computing (MEC) has been recognized as a prospective paradigm to promote the computation capability of mobile devices, as well as reduce energy overhead and service latency of applications for the Internet of Things (IoT). However, there are still some open issues in the existing research works: 1) limited network and computing resource; 2) simple or nonintelligent resource management; and 3) ignored security and reliability. In order to cope with these issues, in this article, 6G and blockchain technology are considered to improve network performance and ensure the authenticity of data sharing for the MEC-enabled IoT. Meanwhile, a novel intelligent optimization method named as collective reinforcement learning (CRL) is proposed and introduced, to realize intelligent resource allocation, meet distributed training results sharing, and avoid excessive consumption of system resources. Based on the designed network model, a cloud-edge collaborative resource allocation framework is formulated. By joint optimizing the offloading decision, block interval, and transmission power, it aims to minimize the consumption overheads of system energy and latency. Then, the formulated problem is designed as a Markov decision process, and the optimal strategy can be obtained by the CRL. Some evaluation results reveal that the system performance based on the proposed scheme outperforms other existing schemes obviously.
Keyword :
Internet of Things (IoT) Internet of Things (IoT) Internet of Things Internet of Things Blockchain Blockchain Blockchains Blockchains Resource management Resource management 6G mobile communication 6G mobile communication mobile-edge computing (MEC) mobile-edge computing (MEC) collective reinforcement learning (CRL) collective reinforcement learning (CRL) Computational modeling Computational modeling Servers Servers sixth generation (6G) sixth generation (6G) Optimization Optimization
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Meng , Pei, Pan , Yu, F. Richard et al. Cloud-Edge Collaborative Resource Allocation for Blockchain-Enabled Internet of Things: A Collective Reinforcement Learning Approach [J]. | IEEE INTERNET OF THINGS JOURNAL , 2022 , 9 (22) : 23115-23129 . |
MLA | Li, Meng et al. "Cloud-Edge Collaborative Resource Allocation for Blockchain-Enabled Internet of Things: A Collective Reinforcement Learning Approach" . | IEEE INTERNET OF THINGS JOURNAL 9 . 22 (2022) : 23115-23129 . |
APA | Li, Meng , Pei, Pan , Yu, F. Richard , Si, Pengbo , Li, Yu , Sun, Enchang et al. Cloud-Edge Collaborative Resource Allocation for Blockchain-Enabled Internet of Things: A Collective Reinforcement Learning Approach . | IEEE INTERNET OF THINGS JOURNAL , 2022 , 9 (22) , 23115-23129 . |
Export to | NoteExpress RIS BibTex |
Abstract :
Industrial Internet of Things (IIoT) has emerged with the developments of various communication technologies. In order to guarantee the security and privacy of massive IIoT data, blockchain is widely considered as a promising technology and applied into IIoT. However, there are still several issues in the existing blockchain-enabled IIoT: 1) unbearable energy consumption for computation tasks; 2) poor efficiency of consensus mechanism in blockchain; and 3) serious computation overhead of network systems. To handle the above issues and challenges, in this article, we integrate mobile-edge computing (MEC) into blockchain-enabled IIoT systems to promote the computation capability of IIoT devices and improve the efficiency of the consensus process. Meanwhile, the weighted system cost, including the energy consumption and the computation overhead, are jointly considered. Moreover, we propose an optimization framework for blockchain-enabled IIoT systems to decrease consumption, and formulate the proposed problem as a Markov decision process (MDP). The master controller, offloading decision, block size, and computing server can be dynamically selected and adjusted to optimize the devices energy allocation and reduce the weighted system cost. Accordingly, due to the high-dynamic and large-dimensional characteristics, deep reinforcement learning (DRL) is introduced to solve the formulated problem. Simulation results demonstrate that our proposed scheme can improve system performance significantly compared to other existing schemes. © 2014 IEEE.
Keyword :
Industrial internet of things (IIoT) Industrial internet of things (IIoT) Energy utilization Energy utilization Reinforcement learning Reinforcement learning Markov processes Markov processes Deep learning Deep learning Blockchain Blockchain Energy efficiency Energy efficiency
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yang, Le , Li, Meng , Si, Pengbo et al. Energy-Efficient Resource Allocation for Blockchain-Enabled Industrial Internet of Things with Deep Reinforcement Learning [J]. | IEEE Internet of Things Journal , 2021 , 8 (4) : 2318-2329 . |
MLA | Yang, Le et al. "Energy-Efficient Resource Allocation for Blockchain-Enabled Industrial Internet of Things with Deep Reinforcement Learning" . | IEEE Internet of Things Journal 8 . 4 (2021) : 2318-2329 . |
APA | Yang, Le , Li, Meng , Si, Pengbo , Yang, Ruizhe , Sun, Enchang , Zhang, Yanhua . Energy-Efficient Resource Allocation for Blockchain-Enabled Industrial Internet of Things with Deep Reinforcement Learning . | IEEE Internet of Things Journal , 2021 , 8 (4) , 2318-2329 . |
Export to | NoteExpress RIS BibTex |
Abstract :
本发明涉及一种基于RFID和混合区块链‑边缘架构的物品追踪方法,通过将区块链、RFID与传统物品追踪的结合,物品经过每个节点的处理信息实时自动上链,可以实现物品传运全自动,提高信息化水平;区块链可溯源性、不可篡改性从根本上解决了记录差错问题,而联盟链的授权访问的特点,能够保证在数据共享过程中的安全性;结合IPFS的去中心化链外存储,仅将Hash值存入区块链,增强区块链的可扩展性,解决区块链存储规模有限的问题;结合区块链与属性基加密的访问控制,避免恶意的数据窃取,保护个人隐私。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 司鹏搏 , 王菲 , 孙恩昌 et al. 一种基于RFID和混合区块链-边缘架构的物品追踪方法 : CN202110387615.4[P]. | 2021-04-09 . |
MLA | 司鹏搏 et al. "一种基于RFID和混合区块链-边缘架构的物品追踪方法" : CN202110387615.4. | 2021-04-09 . |
APA | 司鹏搏 , 王菲 , 孙恩昌 , 杨睿哲 , 李萌 , 张延华 . 一种基于RFID和混合区块链-边缘架构的物品追踪方法 : CN202110387615.4. | 2021-04-09 . |
Export to | NoteExpress RIS BibTex |
Abstract :
本发明公开了一种基于区块链和隐私的自适应分布式机器学习方法,包括:建立基于区块链的具有隐私保护的分布式机器学习系统模型,并依据区块链共识完成节点间的交互过程。通过详细分析本地节点在训练过程及共识过程中的计算复杂度,考虑能耗进行计算资源分配的优化方法,从而给出基于资源分配优化的自适应聚合方法。仿真结果表明,本发明的技术方法基于分布式共识在节点间进行具有隐私保护的训练过程,一方面在能耗约束下对节点上的计算资源分配进行优化,另一方面自适应调整全局聚合频率,从而提高系统总能量的利用率,进一步提高分布式学习过程的收敛性能。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张延华 , 赵学慧 , 杨睿哲 et al. 一种基于区块链和隐私的自适应分布式机器学习方法 : CN202110889794.1[P]. | 2021-08-04 . |
MLA | 张延华 et al. "一种基于区块链和隐私的自适应分布式机器学习方法" : CN202110889794.1. | 2021-08-04 . |
APA | 张延华 , 赵学慧 , 杨睿哲 , 李萌 , 司鹏搏 , 于非 . 一种基于区块链和隐私的自适应分布式机器学习方法 : CN202110889794.1. | 2021-08-04 . |
Export to | NoteExpress RIS BibTex |
Abstract :
本发明公开了基于交替方向乘子算法的无人机支持物联网资源优化方法,通过构建MEC系统模型、区块链系统模型,联合考虑计算卸载决策、频谱资源分配和计算资源分配,以实现MEC系统能耗和区块链系统计算延迟的最佳权衡作为优化目标,对网络场景进行建模。通过交替方向乘子算法对模型进行迭代,实现场景内的资源最优调度。本发明面向无人机支持的物联网场景,克服了物联网数据安全、无人机算力不足、资源分配不合理等造成系统能耗过高和计算时延过长等问题。仿真实验表明,本发明提出的基于交替方向乘子算法的无人机支持物联网资源优化方法实现了MEC系统能耗和区块链系统计算延迟的最佳权衡,在提升数据安全和降低系统能耗、计算时延方面具有一定的优势。
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张延华 , 赵铖泽 , 李萌 et al. 基于交替方向乘子算法的无人机支持物联网资源优化方法 : CN202110322863.0[P]. | 2021-03-26 . |
MLA | 张延华 et al. "基于交替方向乘子算法的无人机支持物联网资源优化方法" : CN202110322863.0. | 2021-03-26 . |
APA | 张延华 , 赵铖泽 , 李萌 , 孙恩昌 , 杨睿哲 , 司鹏搏 . 基于交替方向乘子算法的无人机支持物联网资源优化方法 : CN202110322863.0. | 2021-03-26 . |
Export to | NoteExpress RIS BibTex |
Abstract :
A compact and reconfigurable low noise amplifier (LNA) is proposed by combining an input transistor, composite transistors with Darlington configuration as the amplification and output transistor, T-type structure composite resistors instead of a simplex structure resistor, a shunt inductor feedback realized by a tunable active inductor (AI), a shunt inductor peaking technique realized by another tunable AI. The division and collaboration among different resistances in the T-type structure composite resistor realize simultaneously input impedance matching, output impedance matching and good noise performance; the shunt feedback and peaking technique using two tunable AIs not only extend frequency bandwidth and improve gain flatness, but also make the gain and frequency band can be tuned simultaneously by the external bias of tunable AIs; the Darlington configuration of composite transistors provides high gain; furthermore, the adoption of the small size AIs instead of large size passive spiral inductor, and the use of composite resistors make the LNA have a small size. The LNA is fabricated and verified by GaAs/InGaP hetero-junction bipolar transistor (HBT) process. The results show that at the frequency of 7GHz, the gain S21 is maximum and up to 19dB; the S21 can be tuned from 17dB to 19dB by tuning external bias of tunable AIs, that is, the tunable amount of S21 is 2dB, and similarly at 8GHz; the tunable range of 3dB bandwidth is 1GHz. In addition, the gain S21 flatness is better than 0.4dB under frequency from 3.1GHz to 10.6GHz; the size of the LNA only has 760μm×1260μm (including PADs). Therefore, the proposed strategies in the paper provide a new solution to the design of small size and reconfigurable ultra-wideband (UWB) LNA and can be used further to adjust the variations of gain and bandwidth of radio frequency integrated circuits (RFICs) due to package, parasitic and the variation of fabrication process and temperature. Copyright © by HIGH TECHNOLOGY LETTERS PRESS.
Keyword :
Transistors Transistors Bandwidth Bandwidth Resistors Resistors Composite structures Composite structures Electric inductors Electric inductors Ultra-wideband (UWB) Ultra-wideband (UWB) Impedance matching (electric) Impedance matching (electric) Gallium arsenide Gallium arsenide Feedback amplifiers Feedback amplifiers Low noise amplifiers Low noise amplifiers III-V semiconductors III-V semiconductors
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Zheng , Zhang, Yanhua , Yang, Ruizhe et al. A compact and reconfigurable low noise amplifier employing combinational active inductors and composite resistors feedback techniques [J]. | High Technology Letters , 2021 , 27 (1) : 38-42 . |
MLA | Zhang, Zheng et al. "A compact and reconfigurable low noise amplifier employing combinational active inductors and composite resistors feedback techniques" . | High Technology Letters 27 . 1 (2021) : 38-42 . |
APA | Zhang, Zheng , Zhang, Yanhua , Yang, Ruizhe , Shen, Pei , Ding, Chunbao , Liu, Yaze et al. A compact and reconfigurable low noise amplifier employing combinational active inductors and composite resistors feedback techniques . | High Technology Letters , 2021 , 27 (1) , 38-42 . |
Export to | NoteExpress RIS BibTex |
Abstract :
近年来,随着数字货币的日益兴起和商业应用,区块链技术越来越受到政府部门、工业界以及学术界的关注和认可。与此同时,移动通信网络的快速发展和广泛覆盖,促使物联网(IoT)逐渐走入日常生活,极大程度地提升了工作效率与生活品质。然而,物联网场景中仍存在能效性低、数据传输安全性差等问题,使用区块链技术可有助于促进物联网更好地发展和普及。本文对区块链技术在物联网中的应用进行了系统性综述,首先介绍了背景知识和相关研究,其次提出了区块链的基础架构模型,并且详细阐述了区块链技术应用于物联网各场景的发展现状以及相关特征,最后讨论了一些挑战及未来发展趋势。
Keyword :
共识机制 共识机制 数字货币 数字货币 智能合约 智能合约 区块链 区块链 物联网(IoT) 物联网(IoT)
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 叶欣宇 , 李萌 , 赵铖泽 et al. 区块链技术应用于物联网:发展与展望 [J]. | 高技术通讯 , 2021 , 31 (01) : 48-63 . |
MLA | 叶欣宇 et al. "区块链技术应用于物联网:发展与展望" . | 高技术通讯 31 . 01 (2021) : 48-63 . |
APA | 叶欣宇 , 李萌 , 赵铖泽 , 司鹏搏 , 孙阳 , 张延华 . 区块链技术应用于物联网:发展与展望 . | 高技术通讯 , 2021 , 31 (01) , 48-63 . |
Export to | NoteExpress RIS BibTex |
Abstract :
对采用双回转结构交叉耦合差分有源电感(DGC-DAI)的可调谐、高品质因子Q和低噪声差分有源带通滤波器(THQLNA-BPF)进行了研究。输入级,采用差分共基-共射结构,以抑制噪声和获得高频特性;输出级,采用差分共集放大器,以获得高的驱动能力和高的隔离度;有源电感滤波网络,利用DAI电感值可宽范围调谐、高Q值和低的噪声,来分别实现BPF的中心频率的宽范围调节、高Q值和良好的噪声特性;进一步地,利用变容二极管网络改善BPF中心频率的可调性和提高Q值,利用有源可调负阻网络提高BPF的Q值和进行Q值独立调节。基于WIN 0.2μm GaAs HBT工艺,利用ADS对THQLNA-BPF进行性能验证。...
Keyword :
可调谐有源电感 可调谐有源电感 中心频率 中心频率 有源带通滤波器 有源带通滤波器
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张正 , 张延华 , 温晓伟 et al. 采用新型可调谐有源电感的频率可调谐高Q低噪声的带通滤波器 [J]. | 电子器件 , 2021 , 44 (01) : 39-45 . |
MLA | 张正 et al. "采用新型可调谐有源电感的频率可调谐高Q低噪声的带通滤波器" . | 电子器件 44 . 01 (2021) : 39-45 . |
APA | 张正 , 张延华 , 温晓伟 , 那伟聪 . 采用新型可调谐有源电感的频率可调谐高Q低噪声的带通滤波器 . | 电子器件 , 2021 , 44 (01) , 39-45 . |
Export to | NoteExpress RIS BibTex |
Abstract :
对采用新型可调谐、高Q的有源电感(THQAI)的高优值(FOM)压控振荡器(VCO)进行了研究。在LC振荡回路模块中,利用THQAI具有高Q值、较宽调谐范围的特性,分别实现了VCO的低相位噪声和宽的频率调谐范围;在负阻电路模块中,将电流进行复用,使其只有一条直流工作支路,降低了VCO的功耗,又由于电路中的MOS晶体管始终工作在饱和区,进一步降低了VCO的相位噪声;在输出缓冲级,采用共源NMOS晶体管,放大了该VCO的输出波形。最终,这些技术手段使得VCO的调谐范围、相位噪声和功耗均得到了改善,因此获得了高的FOM值。基于TSMC 0.13μm CMOS工艺库,利用射频集成电路设计工具ADS对该...
Keyword :
可调谐有源电感 可调谐有源电感 压控振荡器 压控振荡器 优值 优值
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 张正 , 张延华 , 温晓伟 et al. 采用可调谐高Q有源电感的高优值VCO的研究 [J]. | 电子器件 , 2021 , 44 (02) : 272-277 . |
MLA | 张正 et al. "采用可调谐高Q有源电感的高优值VCO的研究" . | 电子器件 44 . 02 (2021) : 272-277 . |
APA | 张正 , 张延华 , 温晓伟 , 那伟聪 . 采用可调谐高Q有源电感的高优值VCO的研究 . | 电子器件 , 2021 , 44 (02) , 272-277 . |
Export to | NoteExpress RIS BibTex |
Export
Results: |
Selected to |
Format: |