Indexed by:
Abstract:
In this work, the morphology, crystallization process and crystal structure of the phase-change material TiSbTe (TST) alloy have been successfully established, which is essential for applying this alloy in phase-change memory. Specifically, atomic force microscopy (AFM) was employed to characterize the asdeposited and post-annealed thin films, and transmission electron microscopy (TEM) analyses of the films annealed in situ were used in combination with selected-area electron diffraction (SAED) and radial distribution function (RDF) analyses to investigate the structural evolution from the amorphous phase to the polycrystalline phase. Moreover, the presence of structures with medium-range order in amorphous TST, which is beneficial for high-speed crystallization, was indicated by the structure factors S(Q)s. The crystallization temperature was determined to be approximately 170 degrees C, and the grain size varied from several to dozens of nanometers. As the temperature increased, particularly above 200 degrees C, the first single peak of the rG(r) curves transformed into double shoulder peaks due to the increasing impact of the Ti-Te bonds. In general, the majority of Ti atoms were doped into the SbTe lattice and tended to form structural defects, whereas the remainder of the Ti atoms aggregated, leading to the appearance of TiTe2 phase separation, as confirmed by the SAED patterns, high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images and corresponding energy-dispersive X-ray (EDX) mappings. (C) 2016 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN: 0925-8388
Year: 2016
Volume: 678
Page: 185-192
6 . 2 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:305
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: