Indexed by:
Abstract:
针对传统光伏功率预测特征提取不足导致预测精度不高的问题,提出一种双通道网络模型进行光伏功率预测。首先将光伏功率历史数据进行归一化处理,再将数据送入两个并行的卷积神经网络(Convolutional Neural Network, CNN)进行特征提取,经融合层融合送入长短期记忆网络(Long Short-Term Memory, LSTM)进行光伏功率预测。采用地中海气候光伏发电数据集进行测试,结果表明所提出的方法与单通道网络相比平均绝对误差(Mean-Absolute Error, MAE)减小了12.3%,均方根误差(Root-Mean-Square Error, RMSE)减小了3%,实...
Keyword:
Reprint Author's Address:
Email:
Source :
电力科学与工程
Year: 2019
Issue: 05
Volume: 35
Page: 7-11
Cited Count:
WoS CC Cited Count: 36
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 35
Affiliated Colleges: