• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Shan, Linglong (Shan, Linglong.) | Fan, Hongwei (Fan, Hongwei.) | Guo, Hongxia (Guo, Hongxia.) (Scholars:郭红霞) | Ji, Shulan (Ji, Shulan.) (Scholars:纪树兰) | Zhang, Guojun (Zhang, Guojun.)

Indexed by:

Scopus SCIE PubMed

Abstract:

Nanofiltration has been widely recognized as a promising technology for the removal of micro-molecular organic components from natural water. Natural organic matter (NOM), a very important precursor of disinfection by-products, is currently considered as the major cause of membrane fouling. It is necessary to develop a membrane with both high NOM rejection and anti-NOM fouling properties. In this study, both superhydrophilic and superhydrophobic nanofiltration membranes for NOM removal have been fabricated. The fouling behavior of NOM on superwetting nanofiltration membranes has been extensively investigated by using humic acid (HA) as the model foulant. The extended Derjaguin-Landau-Verwey-Overbeek approach and nanoindentor scratch tests suggested that the super hydrophilic membrane had the strongest repulsion force to HA due to the highest positive total interaction energy (Delta G(TOT)) value and the lowest critical load. Excitation emission matrix analyses of natural water also indicated that the superhydrophilic membrane showed resistance to fouling by hydrophobic substances and therefore high removal thereof. Conversely, the superhydrophobic membrane showed resistance to fouling by hydrophilic substances and therefore high removal capacity. Long-term operation suggested that the superhydrophilic membrane had high stability due to its anti-NOM fouling capacity. Based on the different anti-fouling properties of the studied superwetting membranes, a combination of superhydrophilic and superhydrophobic membranes was examined to further improve the removal of both hydrophobic and hydrophilic pollutants. With a combination of superhydrophilic and superhydrophobic membranes, the NOM rejection (R-UV254) and DOC removal rates (R-DOC) could be increased to 83.6% and 733%, respectively. (C) 2016 Elsevier Ltd. All rights reserved.

Keyword:

NOM Superhydrophobic Nanofiltration Superhydrophilic Fouling

Author Community:

  • [ 1 ] [Shan, Linglong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Fan, Hongwei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Ji, Shulan]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Guojun]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Guo, Hongxia]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 郭红霞

    [Zhang, Guojun]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China;;[Guo, Hongxia]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

WATER RESEARCH

ISSN: 0043-1354

Year: 2016

Volume: 93

Page: 121-132

1 2 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:246

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 47

SCOPUS Cited Count: 49

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Online/Total:987/10607278
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.