Indexed by:
Abstract:
In this paper, we consider the problem of variable selection and model detection in varying coefficient models with longitudinal data. We propose a combined penalization procedure to select the significant variables, detect the true structure of the model and estimate the unknown regression coefficients simultaneously. With appropriate selection of the tuning parameters, we show that the proposed procedure is consistent in both variable selection and the separation of varying and constant coefficients, and the penalized estimators have the oracle property. Finite sample performances of the proposed method are illustrated by some simulation studies and the real data analysis.
Keyword:
Reprint Author's Address:
Email:
Source :
ACTA MATHEMATICA SINICA-ENGLISH SERIES
ISSN: 1439-8516
Year: 2016
Issue: 3
Volume: 32
Page: 331-350
0 . 7 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:71
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: