Indexed by:
Abstract:
针对现有分类模型未充分利用fMRI数据时序特性的问题,提出了一种基于循环神经网络(RNN)的时序fMRI数据分类模型.首先,使用任务态有标注数据训练卷积神经网络模型,得到相应网络参数.然后,将有标注数据和无标注数据按时序组合,共同输入到上一步训练好的模型中,以提取全连接层特征.最后,将提取的特征以一个标签一个时间序列的方式组成有序对输入到RNN中,通过训练得到最终的分类模型.在Haxby数据集上的实验结果表明,使用RNN提取fMRI数据时序特征可有效提升模型分类准确率,并且加入休息态无标注数据后,模型分类性能得到了进一步提升.
Keyword:
Reprint Author's Address:
Email:
Source :
小型微型计算机系统
Year: 2018
Issue: 07
Volume: 39
Page: 1426-1430
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: