Indexed by:
Abstract:
We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.
Keyword:
Reprint Author's Address:
Email:
Source :
NANOSCALE
ISSN: 2040-3364
Year: 2016
Issue: 3
Volume: 8
Page: 1421-1429
6 . 7 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:175
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 34
SCOPUS Cited Count: 36
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: