Indexed by:
Abstract:
BP神经网络(BPNN)已经用于车速预测方面的研究.针对BPNN不同的初始权值和阈值会影响车速预测精度的问题,提出一种基于GA-PSO混合优化的BPNN车速预测方法.以北工大西门到百葛桥为研究路径,构建基于BPNN的车速预测模型;将遗传算法(GA)和粒子群算法(PSO)的寻优过程进行融合,通过逐次迭代取最优的方式确定BPNN的最优初始权值和阈值,以此设计基于GA-PSO混合优化的BPNN车速预测方法.最后,以所选路径为对象,利用基于GA-BPNN的预测法、基于PSO-BPNN的预测法,以及提出的方法对车速进行了实验预测.结果表明,相较于前两种车速预测改进方法,本文方法的平均车速预测误差分别降低...
Keyword:
Reprint Author's Address:
Email:
Source :
交通运输系统工程与信息
Year: 2017
Issue: 06
Volume: 17
Page: 40-47
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 18