Indexed by:
Abstract:
为降低原子钟频差的噪声,根据其数据非线性非平稳的特征,将整体经验模态分解用于原子钟频差去噪算法。首先将原子钟频差数据叠加一定强度的白噪声;然后进行经验模态分解,如此重复多次;最后将各分量叠加求平均得到去噪的原子钟频差序列。从时域和频域上分别分析了该算法的去噪效果,并与小波阈值去噪算法进行了比较。结果表明,该算法有效地去除了原子钟频差数据序列中的噪声,将方差由小波算法的2.707%降为0.7263%,数据变得更加平稳。
Keyword:
Reprint Author's Address:
Email:
Source :
计量学报
Year: 2017
Issue: 04
Volume: 38
Page: 499-503
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: