Indexed by:
Abstract:
针对故障特征集维数高以及冗余的问题,提出一种自适应邻域选择的改进局部切空间排列维数约简方法.通过考虑流形的采样密度、局部弯曲度和局部切空间近似偏离角度,自适应构建样本邻域,以保证局部线性度,能提高算法鲁棒性.为提高故障诊断准确率,提出改进Fisher准则的特征评价方法,首先对原始特征集进行特征选择,优选出能表征类间散度大、类内散度小和低冗余的故障特征,然后采用改进的局部切空间排列算法进行特征融合,得到低维的敏感特征子集,并输入到k最近邻分类器进行故障识别.用滚动轴承不同部位、不同故障程度的实验数据验证了该方法的有效性.
Keyword:
Reprint Author's Address:
Email:
Source :
华中科技大学学报(自然科学版)
Year: 2017
Issue: 01
Volume: 45
Page: 91-96
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: