Indexed by:
Abstract:
为了提高模糊神经网络(FNN)的收敛速度和泛化能力,提出一种基于混合梯度下降算法(HG)的模糊神经网络(HG-FNN).HG-FNN通过设计FNN参数调整过程的自适应学习率,利用链式法则获取FNN参数学习过程的梯度,在实现FNN参数自校正的同时,给出HG-FNN的收敛性证明,保证HG-FNN的收敛速度和泛化能力.最后,将所设计的HG-FNN应用于非线性系统建模与污水处理过程关键水质参数预测,实验比较结果显示,HG-FNN不仅具有较快的收敛速度,而且具有较好的泛化能力.
Keyword:
Reprint Author's Address:
Email:
Source :
控制与决策
Year: 2017
Issue: 09
Volume: 32
Page: 1635-1641
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14