Indexed by:
Abstract:
Sodium-ion batteries are a very promising alternative to lithium-ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long-term stability still hinder their practical application. A cathode material, formed of RuO2-coated Na3V2O2(PO4)(2)F nanowires, has a 50nm diameter with the space group of I4/mmm. When used as a cathode material for Na-ion batteries, a reversible capacity of 120mAhg(-1) at 1C and 95mAhg(-1) at 20C can be achieved after 1000 charge-discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3V2O2(PO4)(2)F nanowires.
Keyword:
Reprint Author's Address:
Email:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2015
Issue: 22
Volume: 54
Page: 6452-6456
1 6 . 6 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:253
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 134
SCOPUS Cited Count: 146
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4