Indexed by:
Abstract:
MCRA(Minima-Controlled Recursive Averaging)方法是经典的噪声估计算法,然而在语音段MCRA方法存在不能对噪声功率谱进行有效更新的问题.针对这一问题,本文利用广义自回归条件异方差(Generalized Autoregressive Conditional Heteroskedasticity,GARCH)模型在时频域对噪声信号建模,在MCRA算法原理的基础上,提出了基于最小控制GARCH模型的噪声估计算法,实验结果表明,本文所提的噪声估计算法能够更为准确估计噪声功率谱,将该算法应用到语音增强中能够获得到较好的语音增强效果.
Keyword:
Reprint Author's Address:
Email:
Source :
电子学报
Year: 2016
Issue: 03
Volume: 44
Page: 747-752
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: