Indexed by:
Abstract:
聚合经验模态分解(ensemble empirical mode decomposition,EEMD)方法极好地抑制了EMD算法的模态混叠,但仍未很好地解决端点效应,另外由于EEMD加入白噪声的幅值系数及总体平均次数需靠经验设定,不利于信号快速、准确地分解与重构.针对上述问题,提出了自适应KEEMD(KELM-EEMD)方法.首先,基于核函数的极限学习机结合镜像法进行极值点延拓以抑制端点效应,并用于仿真信号分解及小麦反射光谱的去噪,验证了该方法抑制端点效应的有效性.其次,通过抑制端点效应后分解获得的高频分量,自适应地确定算法所需加入白噪声的幅值系数及总体平均次数,将此自适应KEEMD方法用于...
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2016
Issue: 04
Volume: 42
Page: 513-520
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: