Indexed by:
Abstract:
针对中文微博信息的特点及这些特点的可测量性和实际任务,系统地梳理了中文微博信息可信度测量指标,并将其进行了谱系化分析,提出一个基于信息融合的中文微博可信度评估框架CCM-IF.首先,为本质不同的三个异构特征:文本内容、信息作者与信息传播使用了不同的度量方式;其次,基于决策层可信度的模糊认知特点,采用了多维证据理论进行特征融合;最后,收集了新浪微博两个真实数据集进行了一系列实验.实验结果表明,与传统信息检索排序方法平滑语言模型(LMJM)相比,CCM-IF符合用户需求的信息占比提高了10% ~ 20%.因此,作为一个静态质量评估指标,CCM-IF可直接用于微博检索排序、垃圾微博过滤等实际任务.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机应用
ISSN: 1001-9081
Year: 2016
Issue: 8
Volume: 36
Page: 2071-2075,2081
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 7
Chinese Cited Count:
30 Days PV: 21
Affiliated Colleges: