Indexed by:
Abstract:
In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with THE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5 MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7 kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%. (C) 2014 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED THERMAL ENGINEERING
ISSN: 1359-4311
Year: 2015
Volume: 76
Page: 301-309
6 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:174
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 46
SCOPUS Cited Count: 50
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: