Indexed by:
Abstract:
The stability of membrane is a key issue for pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. In this study, in order to enhance the stability, composite membrane with "pore-filling" structure was formed on porous ceramic tubular substrate. A simple self-crosslinking strategy based on the unique hyperbranched macromolecule, Bottom W3000, was utilized in the preparation procedure. The hydroxyl and carboxyl groups On Bottom W3000 molecules reacted at intramolecular and intermolecular during thermal cross-linking process, and then hyperbranched polymers were assembled onto the top layer and sublayer of the ceramic substrate. The morphologies and structures of "pore-filling" composite membrane were characterized by FTIR, SEM, and Nano Indenter. Moreover, "non-pore-filling" membrane was also prepared by the same method with an additional "plugging-holes" step. Both of these two composite membranes were used for separating toluene/n-heptane mixtures. The results indicated that the "pore-filling" membrane showed more stable separation performance, clue to its excellent anti-swelling properties. This work thus not only illustrated a new approach for the preparation of "pore-filling" membrane, but also produced a potentially useful organic/inorganic composite membrane for aromatic/aliphatic hydrocarbon mixtures separation. (C) 2014 Elsevier B.V. All rights reserved,
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MEMBRANE SCIENCE
ISSN: 0376-7388
Year: 2015
Volume: 474
Page: 263-272
9 . 5 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:253
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 24
SCOPUS Cited Count: 32
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: