Indexed by:
Abstract:
In case-based reasoning (CBR), the weights of feature attributes directly affect the quality of problem solving. This paper proposes a membrane computing (MC)-based approach to optimize the attribute weights. A cell-like membrane structure with three layers is designed. The initial weight objects are then obtained by a global search using selection, crossover, mutation, and a two-way communication rule. Subsequently, the best weight object is obtained using a simulated annealing (SA) algorithm between the membranes. In this manner, a group of weight objects is received for CBR problem solving. The experiment results show that the classification accuracy of this method is higher compared with the entropy method, genetic algorithms, SA, and the neural networks method. The application of MC can obtain more reasonable attribute weights, which can effectively improve the quality of problem solving for a CBR system. (C) 2014 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
INFORMATION SCIENCES
ISSN: 0020-0255
Year: 2014
Volume: 287
Page: 109-120
8 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:188
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 31
SCOPUS Cited Count: 39
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: