• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wei, Yan (Wei, Yan.) | Wang, Shuying (Wang, Shuying.) (Scholars:王淑莹) | Ma, Bin (Ma, Bin.) | Li, Xiyao (Li, Xiyao.) | Yuan, Zhiguo (Yuan, Zhiguo.) | He, Yuelan (He, Yuelan.) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Poly-beta-hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been revealed as significant factors causing nitrous oxide (N2O) production in denitrifying phosphorus removal systems. In this study, the effect of PHA degradation rate on N2O production was studied at low FNA levels. N2O production always maintained at approximately 40% of the amount of nitrite reduced independent of the PHA degradation rate. The electrons distributed to nitrite reduction were 1.6 times that to N2O reduction. This indicated that electron competition between these two steps was not affected by the PHA degradation rate. Continuous feed of nitrate was proposed, and demonstrated to reduce N2O accumulation by 75%. While being kept low, a possible compounding effect of a low-level FNA could not be ruled out. The sludge used likely contained both polyphosphate- and glycogen-accumulating organisms, and the results could not be simply attributed to either group of organisms. (C) 2014 Elsevier Ltd. All rights reserved.

Keyword:

Denitrifying phosphorus removal Nitrite Poly-beta-hydroxyalkanoates (PHAs) Nitrous oxide (N2O)

Author Community:

  • [ 1 ] [Wei, Yan]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Shuying]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Ma, Bin]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Xiyao]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Yuan, Zhiguo]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 6 ] [He, Yuelan]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 7 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 8 ] [Yuan, Zhiguo]Univ Queensland, Adv Water Management Ctr, St Lucia, Qld 4072, Australia

Reprint Author's Address:

  • 王淑莹

    [Wang, Shuying]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

BIORESOURCE TECHNOLOGY

ISSN: 0960-8524

Year: 2014

Volume: 170

Page: 175-182

1 1 . 4 0 0

JCR@2022

ESI Discipline: BIOLOGY & BIOCHEMISTRY;

ESI HC Threshold:285

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 27

SCOPUS Cited Count: 34

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:436/10586475
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.