Indexed by:
Abstract:
The negative thermal expansion (NTE) properties of the antiperovskite manganese nitrides with micron-scale, submicron-scale and nanometer-scale microstructures, respectively, were investigated using the Mn3Cu0.5Ge0.5N composition as an example. It was discovered that the NTE start temperature, NTE operation temperature range and coefficient of NTE change obviously in a wide range with decreasing the grain size level of the microstructure. The mechanisms for the broadening of the NTE operation temperature range and the decrease in the absolute value of NTE coefficient were proposed based on the grain-size-dependence of the frustrated magnetic interactions and magnetic ordering. The present study indicates that the NTE properties of the antiperovskite manganese nitrides can be tailored by the control of the microstructure scale.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN: 1005-0302
Year: 2014
Issue: 9
Volume: 30
Page: 903-909
1 0 . 9 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:341
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: