• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Sun, Zhonghua (Sun, Zhonghua.) | Song, Xiaoyan (Song, Xiaoyan.) (Scholars:宋晓艳)

Indexed by:

EI Scopus SCIE CSCD

Abstract:

The negative thermal expansion (NTE) properties of the antiperovskite manganese nitrides with micron-scale, submicron-scale and nanometer-scale microstructures, respectively, were investigated using the Mn3Cu0.5Ge0.5N composition as an example. It was discovered that the NTE start temperature, NTE operation temperature range and coefficient of NTE change obviously in a wide range with decreasing the grain size level of the microstructure. The mechanisms for the broadening of the NTE operation temperature range and the decrease in the absolute value of NTE coefficient were proposed based on the grain-size-dependence of the frustrated magnetic interactions and magnetic ordering. The present study indicates that the NTE properties of the antiperovskite manganese nitrides can be tailored by the control of the microstructure scale.

Keyword:

Microstructure scale Antiperovskite manganese nitride Magnetic interaction Negative thermal expansion

Author Community:

  • [ 1 ] [Sun, Zhonghua]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 2 ] [Song, Xiaoyan]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Zhonghua]Hebei Iron & Steel Technol Res Inst, Shijiazhuang 050000, Peoples R China

Reprint Author's Address:

  • 宋晓艳

    [Song, Xiaoyan]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY

ISSN: 1005-0302

Year: 2014

Issue: 9

Volume: 30

Page: 903-909

1 0 . 9 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:341

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 16

SCOPUS Cited Count: 16

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:382/10592393
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.