Indexed by:
Abstract:
针对离散Hopfield神经网络(DHNN)结构复杂的问题,提出一种基于贡献率的结构优化算法.该算法利用奇异值分解方法对连接权值进行设计,进而利用贡献率的方法对DHNN进行结构优化.优化后的网络降低了DHNN结构的复杂程度,使网络具有类似生物神经网络的稀疏结构,实现了DHNN网络结构的优化.最后,通过水质评价和数字识别对该算法进行验证,表明了所提出算法的有效性和可行性,同时,还验证了其对于大规模DHNN的有效性和适用性.
Keyword:
Reprint Author's Address:
Email:
Source :
控制与决策
Year: 2015
Issue: 11
Volume: 30
Page: 2061-2066
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9