Indexed by:
Abstract:
针对Windows环境下恶意程序数量众多且难以判别的情况,为了改善和提高对恶意程序的识别能力和效果,结合程序行为分析和机器学习技术,设计了一个恶意程序的检测系统.通过对所采集的程序样本集进行动态分析,提取出其两类系统调用序列作为样本特征,以此作为输入数据,对机器学习分类器进行监督式学习训练,使其能够对恶意行为和正常行为进行区分,并可以对于未知程序的性质做出判定,可以高效地识别出恶意程序.结果表明,可以通过较短时间的训练即可到达较为满意的判定能力,也表明了机器学习对于程序行为性质判定方面具有广泛的应用前景.
Keyword:
Reprint Author's Address:
Email:
Source :
重庆邮电大学学报(自然科学版)
ISSN: 1673-825X
Year: 2014
Issue: 6
Volume: 26
Page: 778-784
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 5
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: