Indexed by:
Abstract:
半监督文本分类中已标记数据与未标记数据分布不一致,可能导致分类器性能较低。为此,提出一种利用蚁群聚集信息素浓度的半监督文本分类算法。将聚集信息素与传统的文本相似度计算相融合,利用Top-k策略选取出未标记蚂蚁可能归属的种群,依据判断规则判定未标记蚂蚁的置信度,采用随机选择策略,把置信度高的未标记蚂蚁加入到对其最有吸引力的训练种群中。在标准数据集上与朴素贝叶斯算法和EM算法进行对比实验,结果表明,该算法在精确率、召回率以及F1度量方面都取得了更好的效果。
Keyword:
Reprint Author's Address:
Email:
Source :
计算机工程
ISSN: 1000-3428
Year: 2014
Issue: 11
Page: 167-171
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 6
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: