Indexed by:
Abstract:
分类器的模型参数对分类结果有直接影响.针对引入无关样本的Universum SVM算法中模型参数选择问题,采用粒子群优化(particle swarm optimization,PSO)算法对其进行优化.该方法概念简单、计算效率高且受问题维数变化的影响较小,可实现对多个参数同时优选.此外,在PSO中粒子适应度函数的选择是一个关键问题.考虑k遍交叉验证法的估计无偏性,利用交叉验证误差作为评价粒子优劣的适应值.通过舌象样本数据实验,对参数优选前后测试样本识别正确率进行比较,实验结果验证了该算法的有效性.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2013
Issue: 6
Volume: 39
Page: 840-845
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 8
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: