Indexed by:
Abstract:
针对蚁群算法在求解多任务联盟问题(multi-task coalition problem,MTCP)时存在的迭代次数多、求解精度不高的问题,提出了一种基于相对距离和关联度的蚁群算法.该算法针对蚁群算法搜索机制和信息素增量模型,提出了2种策略.首先,为提高资源利用效率,减少Agent的能力浪费,引入了相对距离的概念,提出了基于相对距离的搜索机制;其次,为强化蚂蚁间的协作,利用已获得的解信息,给出了一种基于关联度的信息素增量模型.仿真实验结果表明,与已有的一些算法相比,本文算法不仅能获得更好的联盟结构,而且具有较快的收敛速度.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2013
Issue: 1
Volume: 39
Page: 57-62
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 3
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: