Indexed by:
Abstract:
The ultrafine WC-Co composite powder was synthesized by a newly developed rapid route based on in situ reactions. By using the as-synthesized composite powder, the granulation processing was then carried out to prepare the ultrafine-structured thermal spraying feedstock. The influences of the heat-treatment process on density of the feedstock powder, phase constitution and wear resistance of the resultant WC-Co coatings fabricated by high velocity oxy-fuel (HVOF) were investigated. The results showed that increasing the heating temperature and extending the holding time leaded to remarkable increase in the density and flowability of the feedstock powder. As a result, the decarburization of the in-flight particles could be decreased and the wear resistance of coating was significantly enhanced. The present study demonstrated that the developed techniques for the ultrafine powder and its thermal-sprayed coatings had very promising applications in scaling up to produce ultrafine-structured cermet coatings with excellent performance.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN: 1005-0302
Year: 2013
Issue: 11
Volume: 29
Page: 1067-1073
1 0 . 9 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 22
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: