Indexed by:
Abstract:
本文提出了一种有效的针对受损图像(元素丢失)的图像配准方法。利用矩阵填充技术将受损图像的丢失元素恢复,然后将主元分析法(PCA)应用于尺度不变特征变换(SIFT)中进行图像的配准。针对SIFT算法采用128维特征向量表示特征点,存储空间、匹配时间与特征点数量成正比,文本采用主元分析法对多维特征向量进行降维处理,以提高运算效率;并采用高斯加权欧氏距离代替欧氏距离进行特征点的匹配。实验结果表明,该算法具有较好的稳定性、准确率和匹配速度,针对受损图像配准具有较好的鲁棒性,可应用在基于内容的图像与视频检索等机器视觉领域。
Keyword:
Reprint Author's Address:
Email:
Source :
吉林大学学报(工学版)
Year: 2013
Issue: S1
Volume: 43
Page: 78-83
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: