Indexed by:
Abstract:
DNA damage induced from perfluorooctane sulfonate (PFOS) was further developed on a nano-porous bionic interface. The interface was formed by assembling DNA on nano-gold particles which were embedded in a nano-porous overoxidized polypyrrole film (OPPy). Atomic force microscopy, scanning electron microscope and electrochemical investigations indicate that OPPy can be treated to form nano-pore structures. DNA damage due to PFOS was proved using electrochemistry and X-ray photoelectron spectroscopy (XPS) and was investigated by detecting differential pulse voltammetry (DPV) response of methylene blue (MB) which was used as electro-active indicator in the system. The current of MB attenuates obviously after incubation of DNA in PFOS. Moreover, electrochemical impedance spectroscopy (EIS) demonstrates that PFOS weakens DNA charge transport. The tentative binding ratio of PFOS: DNA base pair was obtained by analyzing XPS data of this system. (C) 2013 Elsevier B. V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SURFACE SCIENCE
ISSN: 0169-4332
Year: 2013
Volume: 284
Page: 258-262
6 . 7 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: