Indexed by:
Abstract:
采用环向对数应变引入非线性,建立了受轴压圆柱壳径向轴对称运动的非线性波动方程,借助约化摄动法(Reductive Perturbation Method,简称RPT)导出了非线性Schro。dinger方程.采用行波法给出了周期波解及退化条件下的包络孤立子解.引入阻尼和强迫力扰动,讨论了轴压圆柱壳中非线性Schro。dinger方程的混沌行为,给出了系统进入Smale马蹄混沌的临界条件.数值模拟结果验证了混沌现象的多样性和复杂性.
Keyword:
Reprint Author's Address:
Email:
Source :
中北大学学报(自然科学版)
Year: 2013
Issue: 04
Volume: 34
Page: 345-352,342
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: