• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liu, Yuxi (Liu, Yuxi.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴) | Deng, Jiguang (Deng, Jiguang.) | Li, Xinwei (Li, Xinwei.) | Wang, Yuan (Wang, Yuan.) | Arandiyan, Hamidreza (Arandiyan, Hamidreza.) | Xie, Shaohua (Xie, Shaohua.) | Yang, Huanggen (Yang, Huanggen.) | Guo, Guangsheng (Guo, Guangsheng.)

Indexed by:

EI Scopus SCIE

Abstract:

Three-dimensionally ordered macroporous (3DOM) La0.6Sr0.4MnO3 (LSMO) and its supported gold (xAu/LSMO, x = 3.4-7.9 wt%) catalysts were prepared using the polymethyl methacrylate-templating and gas-bubble-assisted polyvinyl alcohol-protected reduction methods, respectively. There were good correlations of surface-adsorbed oxygen species concentration and low-temperature reducibility with the catalytic activity of the sample for CO and toluene oxidation. Among the LSMO and xAu/LSMO samples, 6.4Au/LSMO performed the best, giving T-50% and T-90% values of -19 and 3 degrees C for CO oxidation and 150 and 170 degrees C for toluene oxidation, respectively. The apparent activation energies (31-32 and 44-48 kJ/mol) obtained over xAu/LSMO were much lower than those (45 and 59 kJ/mol) obtained over LSMO for the oxidation of CO and toluene, respectively. It is concluded that higher oxygen adspecies concentration, better low-temperature reducibility, and strong interaction between Au and LSMO are responsible for the excellent catalytic performance of 6.4Au/LSMO. (C) 2013 Elsevier Inc. All rights reserved.

Keyword:

Three-dimensionally ordered macroporous perovskite-type oxide Supported gold catalyst Carbon monoxide oxidation Toluene oxidation Strontium-substituted lanthanum manganite

Author Community:

  • [ 1 ] [Liu, Yuxi]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 2 ] [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 3 ] [Deng, Jiguang]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Xinwei]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Yuan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 6 ] [Xie, Shaohua]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 7 ] [Yang, Huanggen]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 8 ] [Guo, Guangsheng]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 9 ] [Arandiyan, Hamidreza]Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China

Reprint Author's Address:

  • 戴洪兴

    [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF CATALYSIS

ISSN: 0021-9517

Year: 2013

Volume: 305

Page: 146-153

7 . 3 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 146

SCOPUS Cited Count: 153

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Online/Total:914/10607303
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.