Indexed by:
Abstract:
文本对象所固有的多义性,面对短文本特征稀疏和上下文缺失的情况,现有处理方法无法明辨语义,形成了底层特征和高层表达之间巨大的语义鸿沟.本文尝试借由时间、空间、联系等要素挖掘文本间隐含的关联关系,重构文本上下文范畴,提升情感极性分类性能.具体做法对应一个两阶段处理过程:1)基于短文本的内在联系将其初步重组成上下文(领域);2)将待处理短文本归入适合的上下文(领域)进行深入处理.首先给出了基于Naive Bayes分类器的短文本情感极性分类基本框架,揭示出上下文(领域)范畴差异对分类性能的影响.接下来讨论了基于领域归属划分的文本情感极性分类增强方法,并将领域的概念扩展为上下文关系,提出了基于特殊上下文关系的文本情感极性判别方法.同时为了解决由于信息缺失所造成的上下文重组困难,给出基于遗传算法的任意上下文重组方案.理论分析表明,满足限制条件的前提下,基于上下文重构的情感极性判别方法能够同时降低抽样误差(Sample error)和近似误差(Approximation error).真实数据集上的实验结果也验证了理论分析的结论.
Keyword:
Reprint Author's Address:
Email:
Source :
自动化学报
ISSN: 0254-4156
Year: 2012
Issue: 1
Volume: 38
Page: 55-67
Cited Count:
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 36
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: