• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhou, Ying (Zhou, Ying.) | Zi, Teng (Zi, Teng.) | Lang, Jianlei (Lang, Jianlei.) (Scholars:郎建垒) | Huang, Dawei (Huang, Dawei.) | Wei, Peng (Wei, Peng.) | Chen, Dongsheng (Chen, Dongsheng.) (Scholars:陈东升) | Cheng, Shuiyuan (Cheng, Shuiyuan.) (Scholars:程水源)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Rural residential coal combustion (RRCC) for household heating is a potentially important source of air pollution. However, little research has been done on the environmental impacts of RRCC. This study therefore investigated the impacts of RRCC on air pollution based on detailed household heating data obtained from intensive face-to-face interviews in Shandong province, China. The total contributions and specific contributions of coal, stoves, and coal-stove combinations to air pollution were simulated using the WRF-CAMx-PSAT model. The RRCC for heating had a considerable impact on air pollution, contributing 36.1, 9.1, and 16.1% of atmospheric SO2, NOx, and PM2.5 in winter, respectively. Different coal -stove combinations had different impacts on air pollution and mitigation efficiencies. The combination of bituminous coal and advanced coal stoves was the dominant contributor to air pollution, comprising 60.3-68.8% of the total RRCC contribution to different air pollutants. Sensitivity analyses indicated that bituminous coal burnt in a traditional stove had the highest mitigation efficiency (0.67 mu g . m(-3)/ 1 0 kt) for atmospheric PM2.5 pollution, 4.1 times higher than that of anthracite briquette coal burnt in advanced coal stoves. Moreover, although RRCC is a near-surface emission source, it contributed considerably to regional pollution. Non-local RRCC emissions accounted for 21.8-74.6,15.5-72.3, and 35.3-79.9% of the total contribution to SO2, NOx, and PM2.5 in different cities, respectively. The findings of this study improve understanding on the environmental impacts of rural emissions and can provide scientific support for the formulation of effective air pollution mitigation strategies. (C) 2020 Elsevier Ltd. All rights reserved.

Keyword:

Rural residential coal consumption Coal and stove type Regional transport Emissions Mitigation efficiency

Author Community:

  • [ 1 ] [Zhou, Ying]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Zi, Teng]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Huang, Dawei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Chen, Dongsheng]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Cheng, Shuiyuan]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 7 ] [Wei, Peng]Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China

Reprint Author's Address:

  • 郎建垒

    [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CHEMOSPHERE

ISSN: 0045-6535

Year: 2020

Volume: 260

8 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:138

Cited Count:

WoS CC Cited Count: 35

SCOPUS Cited Count: 42

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:948/10532750
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.