• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Xinwei (Li, Xinwei.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴) | Deng, Jiguang (Deng, Jiguang.) | Liu, Yuxi (Liu, Yuxi.) | Zhao, Zhenxuan (Zhao, Zhenxuan.) | Wang, Yuan (Wang, Yuan.) | Yang, Huanggen (Yang, Huanggen.) | Au, Chak Tong (Au, Chak Tong.)

Indexed by:

EI Scopus SCIE

Abstract:

Rhombohedrally crystallized three-dimensionally ordered macroporous (3DOM) La0.6SrO4CoO3 (LSCO)supported Co3O4 (x wt% o(3)O(4)/3DOM LSCO; x=0, 2, 5, 8, and 10) were prepared using the in situ poly(methyl methacrylate)-templating strategy. Physicochemical properties of the materials were characterized by means of numerous analytical techniques, and their catalytic activities were evaluated for the combustion of toluene. It is shown that the x wt% Co3O4/3DOM LSCO samples displayed a 3DOM architecture and a high surface area of 29-32 m(2)/g. Among the x wt% Co3O4/3DOM LSCO samples, the 8 wt% Co3O4/3DOM LSCO sample possessed the highest adsorbed oxygen species concentration and the best low-temperature reducibility. The 8 wt% Co3O4/3DOM LSCO sample showed the best catalytic performance for toluene combustion (the temperatures required for toluene conversions of 10, 50, and 90% were 158, 210, and 227 degrees C at a space velocity of 20,000 mL/(gh), respectively). The apparent activation energies (43-58 kj/mol) of the x wt% Co3O4/3DOM LSCO (x=0-10) samples were lower than those (59-67 kJ/mot) of the 8 wt% Co3O4/bulk LSCO and bulk LSCO samples. It is concluded that the excellent catalytic performance of 8 wt% Co3O4/3DOM LSCO was associated with its high oxygen adspecies concentration, good low-temperature reducibility, and strong interaction between Co3O4 and LSCO as well as high-quality 3DOM structure. (C) 2013 Elsevier B.V. All rights reserved.

Keyword:

Perovskite-type oxide Metal oxide-support interaction Three-dimensionally ordered macropore Supported Co3O4 catalyst Toluene combustion

Author Community:

  • [ 1 ] [Li, Xinwei]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 2 ] [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 3 ] [Deng, Jiguang]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Yuxi]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 5 ] [Zhao, Zhenxuan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Yuan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 7 ] [Yang, Huanggen]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 8 ] [Au, Chak Tong]Hong Kong Baptist Univ, Dept Chem, Kowloon, Hong Kong, Peoples R China

Reprint Author's Address:

  • 戴洪兴

    [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED CATALYSIS A-GENERAL

ISSN: 0926-860X

Year: 2013

Volume: 458

Page: 11-20

5 . 5 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 71

SCOPUS Cited Count: 74

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:1046/10574359
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.