• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Yifei (Wang, Yifei.) | Zhao, Wen (Zhao, Wen.) | Qi, Ziyuan (Qi, Ziyuan.) | Zhang, Li (Zhang, Li.) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Recently, zeolitic imidazolate framework-8 (ZIF8) and its derivatives have been applied in aqueous contaminant removal. Herein, three types of ZIF8@carbon nanotube (CNT) hybrids harvesting different pore structures and chemical bonding information are utilized for phosphate removal in the typical wastewater of activated sludge system (SW) and partial nitrification-denitrification treatment system (PND). Effluent organic matter (EfOM) is found to compete with phosphate for adsorption sites on adsorbents, resulting in reducing adsorptive capacities for phosphate, and the negative effect trend to become severer with increasing EfOM concentrations. Thus adverse impact arc highly to be relieved by using ZIF8@CNT-2 (hybrids with CNT dosage of 120 mg) with novel structure design, the hybrid of which harvests the highest phosphate removal of 92.8-100%, the largest Partition coefficient (PC) of 9119.05 mg g(-1) pM with initial concentration of 0.96 mg L-1 , pH independence in the range from 4 to 10. Analyses of the XPS characterization and first-principles calculations demonstrate the dominant interactions of Zn-O-P and H-bond during phosphate adsorption process by ZIF8@CNT hybrids. Such interactions are suppressed in presence of EfOM by weakening the above-stated binding energy at different adsorption sites according to first-principles simulation, resulting in declined phosphate adsorption capacity. In this regard, the less sensitivity to co-existing EfOM of ZIF8@CNT-2 may be due to the increased P-O, Zn-OP and P-OH and the strengthened tolerance of nanostructure. These results suggest the promising enhanced phosphate removal in presence of EfOM could be obtained by specifically designing adsorbent structure. (C) 2020 Elsevier B.V. All rights reserved.

Keyword:

Phosphate Competition adsorption MOFs DFT calculation EfOM

Author Community:

  • [ 1 ] [Wang, Yifei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Qi, Ziyuan]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Zhao, Wen]China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Peoples R China

Reprint Author's Address:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

Year: 2020

Volume: 745

9 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:138

Cited Count:

WoS CC Cited Count: 27

SCOPUS Cited Count: 29

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:1282/10605357
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.