• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Hao, Bo (Hao, Bo.) | Yan, Yong (Yan, Yong.) | Wang, Xiaobo (Wang, Xiaobo.) | Chen, Ge (Chen, Ge.) (Scholars:陈戈)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

We fabricated a sandwich-like branched-polyethyleneimine (b-PEI)/TiO2/Au/graphene oxide (GO) nanocomposite through a biomimetic layer-by-layer co-mineralization approach, and the polymer b-PEI was believed to act as both an inducing agent for the hydrolysis of titanium bis(ammonium lactato)dihydroxide (Ti-BALDH) and a reducing agent for the reduction of HAuCl4 in the synthetic procedure. Upon organic pyrolysis in air at 500 degrees C, a TiO2/Au nanosheet was formed; and gold nanocrystals were observed uniformly dispersed on TiO2 nanosheet. Moreover, the obtained TiO2/Au nanosheets demonstrated an enhanced lithium storage performance when they are used as anode materials for lithium ion batteries (LIBs), particularly, a high capacity of 205 mA h g(-1) and 189 mA h g(-1) was obtained at 5 C and 10 C rate, respectively, indicating the high rate capability of the material. The greatly improved rate performance might be attributed from both the sheet-like nanostructure and the existence of uniformly dispersed gold nanocrystals, which facilitate electron transfer and lithium ions diffusion in the material. The result suggests that the TiO2 electrode performance can be improved through a design of sheet-like nanocomposites using a bio-inspired route, which is desirable for both "green synthesis" and application for high power LIBs, moreover, such a benign bio-inspired route can be developed into a general pathway to synthesize many other TiO2 based nanocomposites for broad applications in the fields of batteries, photoelectrochemistry, photocatalysis and dye-sensitized solar cells.

Keyword:

Author Community:

  • [ 1 ] [Hao, Bo]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Yong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Xiaobo]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Ge]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 陈戈

    [Chen, Ge]Beijing Univ Technol, Coll Environm & Energy Engn, Pingleyuan 100, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

NANOSCALE

ISSN: 2040-3364

Year: 2013

Issue: 21

Volume: 5

Page: 10472-10480

6 . 7 0 0

JCR@2022

ESI Discipline: PHYSICS;

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 25

SCOPUS Cited Count: 26

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:689/10635290
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.