Indexed by:
Abstract:
This paper proposes a new approach for variable selection in partially linear errors-in-variables (EV) models for longitudinal data by penalizing appropriate estimating functions. We apply the SCAD penalty to simultaneously select significant variables and estimate unknown parameters. The rate of convergence and the asymptotic normality of the resulting estimators are established. Furthermore, with proper choice of regularization parameters, we show that the proposed estimators perform as well as the oracle procedure. A new algorithm is proposed for solving penalized estimating equation. The asymptotic results are augmented by a simulation study.
Keyword:
Reprint Author's Address:
Email:
Source :
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
ISSN: 0168-9673
Year: 2012
Issue: 4
Volume: 28
Page: 769-780
0 . 8 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: