Indexed by:
Abstract:
以70种蛋白质折叠为研究对象,对每种折叠,选择序列同一性小于25%、样本量大于3的代表性蛋白质为训练集,采用机器和人工结合的办法进行结构比对,产生序列排比,经过训练得到了适合每种折叠的概形隐马尔科夫模型(profile HMM)用于该折叠类型的识别.对Astral1.65中的9 505个蛋白质结构域样本进行单模型识别,平均敏感性和特异性分别为91.93%和99.95%,Matthew相关系数为0.87.在折叠类型水平上,与Pfam和SUPERFAMILY单纯使用序列比对构建的HMM相比,所用模型数量显著减少,仍然保持很高的识别效果.结果表明:对序列相似度很低但具有相同折叠类型的蛋白质,可以通过...
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2011
Issue: 07
Volume: 37
Page: 1103-1109
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: