Indexed by:
Abstract:
In this paper, we discuss the model checking problem for a partial linear model when some covariates are missing at random. A weighted model-adjustment method is applied to estimate the regression coefficients and the nonparametric function for the null hypothetical partial linear model. A testing procedure based on a residual-marked empirical process is developed to check the adequacy of the partial linear model. It is shown that the proposed test is consistent and can detect the local alternatives converging to the null hypothetical model at the rate n(-1/2). Since the asymptotic null distribution of the testing statistics is case-dependent, an adjusted wild bootstrap method is used to decide the critical value, which is proved to be consistent. A simulation study and a real data analysis are conducted to show that the proposed procedure works well.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF NONPARAMETRIC STATISTICS
ISSN: 1048-5252
Year: 2012
Issue: 4
Volume: 24
Page: 841-856
1 . 2 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: