• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Sun, Yawen (Sun, Yawen.) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻) | Zhang, Jianhua (Zhang, Jianhua.) | Li, Xiyao (Li, Xiyao.) | Zhang, Qiong (Zhang, Qiong.) | Zhang, Liang (Zhang, Liang.)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Denitrifying phosphorus removal sludge are usually faced with various famine environments in wastewater treatment plants (WWTPs). Endogenous metabolisms under aerobic, anoxic, and anaerobic starved conditions were characterized to investigate their impact on survival and activities of denitrifying polyphosphate accumulating organisms (DPAOs). DPAOs utilized intracellular polymers to survive and presented diverse consumed priorities of PHA types under various starvations. The biomass decay rate was approximately 2.7 and 1.7 times lower for aerobic condition than for anoxic and anaerobic conditions owing to the maximum maintenance energy requirement for aerobic condition (68.6 mmol/C-molVSS ATP). During short-term starvations, significant activity decay for anaerobic starved sludge was attributed to its distinctive endogenous metabolisms. For longterm starvations, the higher amounts and preponderant type of PHA (PHB) reserve favored to the greater DPAO activities for anoxic starved sludge. The results show that anoxic condition may be an implementable strategy for maintaining denitrifying phosphorus removal performance in WWTPs.

Keyword:

Denitrifying polyphosphate accumulating organisms (DPAOs) Starvation condition Biomass decay Activity decay Endogenous metabolisms

Author Community:

  • [ 1 ] [Sun, Yawen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Jianhua]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Xiyao]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Qiong]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Liang]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Engn Res Ctr Beijing, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Engn Res Ctr Beijing, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

BIORESOURCE TECHNOLOGY

ISSN: 0960-8524

Year: 2020

Volume: 315

1 1 . 4 0 0

JCR@2022

ESI Discipline: BIOLOGY & BIOCHEMISTRY;

ESI HC Threshold:136

Cited Count:

WoS CC Cited Count: 29

SCOPUS Cited Count: 32

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:541/10598398
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.