Indexed by:
Abstract:
To safely and reliably use nanowires (NWs) for exploring new functions for different nanodevices, the mechanical properties and structural evolution of the nanowires under external stress become highly important. Large strain (up to 14%) bending experiments of Si NWs were conducted in a high-resolution transmission electron microscope at atomic resolution. The direct dynamic atomic-scale observations revealed that partial and full dislocation nucleation, motion, escape, and interaction were responsible for absorbing the ultralarge strain of up to 14% in bent Si nanowires. The prevalent full dislocation movement and interactions induced the formation of Lomer lock dislocations in the Si NWs. Finally, in contrast to the unlock process of Lomer dislocations that can happen in metallic materials, we revealed that the continuous straining on the Lomer dislocations induced a crystal-amorphous (c-a) transition in Si NWs. Our results provide direct explanation about the ultralarge straining ability of Si at the nanometer scale.
Keyword:
Reprint Author's Address:
Email:
Source :
NANO LETTERS
ISSN: 1530-6984
Year: 2011
Issue: 6
Volume: 11
Page: 2382-2385
1 0 . 8 0 0
JCR@2022
ESI Discipline: PHYSICS;
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 90
SCOPUS Cited Count: 100
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: