• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Pang, Zhaoguang (Pang, Zhaoguang.) | Zhang, Xinping (Zhang, Xinping.) (Scholars:张新平)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 degrees C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90 degrees after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.

Keyword:

Author Community:

  • [ 1 ] [Pang, Zhaoguang]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Xinping]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Pang, Zhaoguang]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Xinping]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 5 ] [Pang, Zhaoguang]Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050016, Peoples R China

Reprint Author's Address:

  • [Pang, Zhaoguang]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

NANOTECHNOLOGY

ISSN: 0957-4484

Year: 2011

Issue: 14

Volume: 22

3 . 5 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 25

SCOPUS Cited Count: 27

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:522/10625712
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.